
A Self-Organising Solution to the Collective Sort Problem
in Distributed Tuple Spaces

Mirko Viroli, Matteo Casadei, Luca Gardelli
DEIS

Alma Mater Studiorum - Università di Bologna
via Venezia 52, 47023 Cesena (FC), Italy

{mirko.viroli,m.casadei,luca.gardelli}@unibo.it

ABSTRACT
Coordination languages and models are recently moving to-
wards the application of techniques coming from the re-
search context of complex systems: adaptivity and self-
organisation are exploited in order to tackle typical features
of systems to coordinate, such as openness, dynamism and
unpredictability. In this paper we focus on a paradigmatic
problem we call collective sort, where autonomous agents
are assigned the task of moving tuples across different tuple
spaces with the goal of reaching perfect clustering: tuples
of the same kind are to be collected in the same, unique
tuple space. We describe a self-organising solution to this
problem, where each agent moves tuples according to partial
observations, still making complete sorting emerge from any
initial tuple configuration.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.11 [Software Engineering]: Software Architec-
tures; D.3.3 [Programming Languages]: Language Con-
structs and Features

Keywords
Coordination Models, Tuple Spaces, Self-Organization

1. INTRODUCTION
Systems that should self-organise to unpredictable

changes in their environment very often need to feature
adaptivity as an emergent property. As this observation
was first made in the context of natural systems, it was
shortly recognised as an inspiring metaphor for artificial sys-
tems as well [3]. However, a main problem with emergent
properties is that, by their very definition, they cannot be
achieved through a systematic design: their dynamics and
outcomes cannot be fully predicted. Nonetheless, providing
some design support in this context is still possible. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07, March 11-15, 2007 Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

whole system of interest—that is, the system application
and the environment it is immersed in—can be modelled as
a stochastic system, namely, a system whose dynamics and
duration aspects are probabilistic. In this scenario, simula-
tions can be run and used as a fruitful tool to predict certain
aspects of the system behaviour, and to support a correct
design before actually implementing the application at hand
[6].

This scenario is particularly interesting for agent coordi-
nation. Some works like the TOTA middleware [8], Swarm-
Linda [9], and stochastic KLAIM [10], though starting from
different perspectives, all develop on the idea of extending
standard coordination models with features related to adap-
tivity and self-organisation. They share the idea that tuples
in a tuple space eventually spread to other tuple spaces in
a non-deterministic way, depending on certain timing and
probability issues. Accordingly, in this paper we focus on
the role that simulation tools can have in this context, to-
wards the identification of some methodological approach to
system design.

As a reference example, we consider the brood sorting
problem for swarm intelligence [3], and recast it to the con-
text of a distributed tuple space scenario: we call this prob-
lem collective sort—as originally suggested in [4]. This ap-
plication features autonomous agents managing a closed set
of tuple spaces spread over a distributed system. These
agents have the goal of moving tuples from one space to the
other until completely “sorting” them, that is, (i) tuples of
different types reside in different tuple spaces, and (ii) tuples
of the same kind reside in the same tuple space.

As a first step, we show the solution to this problem de-
scribed in [4], where each agent, associated to a single tuple
space, has the private goal of moving away tuples which are
apparently not contributing to perfect clustering: in spite
of this local criterion, complete sorting appear to emerge
from initial chaotic tuple configurations. In particular, the
decision of which tuple kind will be aggregated in a given
tuple space is not taken a priori, but is an emergent effect of
the dynamics of tuple ordering. We observe that this solu-
tion does not always converge, since—because of its locality
character—it does not handle cases where e.g. two differ-
ent tuple spaces are aggregating the same kind of tuple and
nothing else, that is, cases of non-complete sorting. The
problem of this approach is that the concept of vacuum is
not modelled, though it plays an important role in brood
sorting, allowing to express the idea of tuple concentration
in a given locality. We tackle this issue by introducing in

354

our scenario vacuum tuples, which are special kind of tu-
ples that can locally affect tuple sorting. A self-organising
technique is again used to dynamically adapt the number
of such vacuum tuples so as to fit the requirements of each
tuple space, leading to a final solution where (i) the overall
performance of sorting is not significantly altered, (ii) situa-
tions of non-complete-sorting are efficiently escaped leading
to convergence from arguably any initial configuration.

To devise design choices, and provide evidence of correct-
ness and appropriateness of our approach we relied on simu-
lations throughout. Many simulation tools can be exploited
to this end, though they all necessarily force the designer to
exploit a given specification language, and therefore better
apply to certain scenarios and not to others—examples are
SPIM [12], SWARM [2] and REPAST [1]. Instead of relying
on one of them, in this paper we adopted a general-purpose
approach proposed in [4] and based on the Maude rewriting
system [5], where we developed a framework for allowing a
designer to specify in a custom way a system model in terms
of a stochastic transition system—a labelled transition sys-
tem where actions are associated with a rate (of occurrence)
[13]. One such specification is then exploited by the tool to
perform simulations of the system behaviour, thus making
it possible to observe the emergence of certain (possibly un-
expected) properties.

The remainder of this paper is as follows: Section 2 de-
scribes the collective sort problem, Section 3 presents the
full solution to this problem, and finally Section 4 concludes
providing final remarks.

2. COLLECTIVE SORTING

2.1 General Scenario
We consider a case of Swarm-like intelligence known as

brood sorting [3]. It features a multiagent system where the
environment is structured and populated with items of dif-
ferent kinds: the goal of agents is to collect and move items
across the environment so as to order them according to an
arbitrary shared criterion. This problem basically amounts
to clustering: homogeneous items should be grouped to-
gether and should be separated from others. Moving to a
typical context of coordination models and languages, we
consider the case of a fixed number of tuple spaces hosting
tuples of a known set of tuple templates. The goal of agents
is to move tuples from one tuple space to the other until
the tuples are clustered in different tuple spaces according
to their template. We call this problem collective sort.

In several scenarios, sorting tuples may increase the over-
all system efficiency. For instance, it can make it easier for
an agent to find an information of interest based on its pre-
vious experience: the probability of finding an information
where a previous and related one was found is high. More-
over, when tuple spaces contain tuples of one kind only,
it is possible to apply aggregation techniques to improve
their performance, and it is generally easier to manage and
achieve load-balancing.

Increasing system order however comes at a computa-
tional price. Achieving ordering is a task that should be
generally performed online and in background, i.e. while the
system is running and without adding a significant overhead
to the main system functionalities. Indeed, it might be in-
teresting to look for suboptimum algorithms, which are able
to guarantee a certain degree of ordering in time.

Nature is a rich source of simple but robust strategies; the
behaviour we are looking for has already been explored in
the domain of social insects—the aforementioned brood sort-
ing. Ants perform similar tasks when organising broods and
larvae: although their actual behaviour is still not fully un-
derstood, there are several models that are able to mimic the
dynamics of the system. Ants wander randomly and their
behaviour is modelled by two probabilities, respectively, the
probability to pick up Pp and drop Pd an item

Pp =

„
k1

k1 + f

«2

, Pd =

„
f

k2 + f

«2

, (1)

where k1 and k2 are constant parameters and f is the num-
ber of items perceived by an ant in its neighborhood: f may
be evaluated with respect to the recently encountered items.
To evaluate the system dynamics, apart from visualising it,
it can be useful to provide a measure of the system order.
Such an estimation can be obtained by measuring the spatial
entropy, as done e.g. in [7]. Basically, the environment is
subdivided into nodes and Pi is the fraction of items within
a node, hence the local entropy is Hi = −Pi log Pi. The sum
of Hi having Pi > 0 gives an estimation of the order of the
entire system, which is supposed to decrease in time, hope-
fully reaching zero (complete clustering).

2.2 An Architecture for Implementing Collec-
tive Sorting

We conceive a multiagent system as a collection of agents
interacting with/via tuple spaces: agents are allowed to
read, insert and remove tuples in the tuple spaces. Addi-
tionally, and transparently to the agents, an infrastructure
provides a sorting service in order to maintain a certain de-
gree of order of tuples in tuple spaces. This service is realised
by a class of agents that will be responsible for the sorting
task.

We suppose that tuples belong to a well defined and glob-
ally shared set of tuple kinds, which are modelled as disjoint
tuple templates K1, . . . Kn—no tuple matches two different
templates. In general, an agent can be seen as associated to
a tuple space S: given a certain tuple kind Ki—e.g. chosen
randomly each time—the agent goal is to evaluate whether
some tuple of the kind Kii in tuple space S should be moved
elsewhere. This scenario is depicted in Figure 1.

Since we want to perform this task online and in back-
ground, and with a fully-distributed, swarm-like algorithm,
we cannot compute the probabilities in Equation 1 to de-
cide whether to move or not a tuple: the approach would
not be scalable since it requires to count all the tuples for
each tuple space, which might not be practical.

In general, a new primitive to access tuple spaces is needed
which can (i) feature the locality character, (ii) can take into
account the different quantities of tuples occurring in the
space at a given time, and (iii) can possibly fit the semantics
of some existing primitive—so as not to impose a too severe
semantic change. A reading primitive urd called uniform
read is hence introduced. This is a variant of the standard
rd primitive that takes a tuple template and yields any tu-
ple matching the template: primitive urd instead takes a
finite number of templates and chooses the tuple in a prob-
abilistic way among all the tuples that match any of such
templates. For instance, suppose a tuple space has 3 copies
of tuple a(1), 7 copies of tuple a(2) and 20 copies of tuple
b(1). Then, operation urd([a(X), b(X)]) either returns a(1),

355

Figure 1: Architecture for collective sort

a(2) or b(1), and furthermore, the probability that it returns
a tuple of the kind b(X) is twice as much as a(X)’s. This is
because the number of tuples matching b(X), that is b(1), is
twice as much those matching a(X), which are either a(2)
or a(1). Note that this primitive handles probability only
at the level of the tuple templates passed as argument: as
far as a tuple matching a(X) is returned, nothing is said
about the probability this is a(1) or a(2)—they are chosen
non-deterministically. As standard Linda-like tuple spaces
typically do not directly implement this variant, it can e.g.
be easily supported by some more expressive model like Re-
SpecT tuple centres [11]—but we shall not deepen this im-
plementation aspect in the following.

Thanks to this new primitive, each agent has now also
the ability of performing a uniform read over the given tem-
plates: in general, if a tuple of kind K is accordingly re-
turned, the agent can locally assume that, probabilistically,
the tuple kind K is aggregating there more than others.

2.3 A Prototype Solution to the Problem
Given this general architecture for modelling the collective

sort problem, providing a self-organising solution here means
to identify the agenda of agents, that is, the sequence of
tasks each agent locally performs. For one such solution
to be adequate, complete sorting has to be achieved as an
emergent property of the overall system.

Each agent is associated to its source tuple space S, it
works at a given rate r, and share with other agents the
consensus on the tuple kinds K1, . . . , Kn to sort, and the
set of tuple spaces hosting them. Rate r is the frequency at
which each agent schedules the execution of the agenda—
we suppose one such frequency is sufficiently small for an
agenda execution being over before the next one starts. The
agent agenda we consider is as follows:

1. a destination tuple space D 6= S is drawn randomly;

2. a tuple kind K is drawn randomly among the tuple
kinds occurring in S;

3. a urd is performed on S, yielding tuple kind KS ;

4. a urd is performed on D, yielding tuple kind KD;

5. if K = KD 6= KS a tuple of kind K is moved from S
to D.

At the time the second task is executed, the agent is fo-
cussing on whether one tuple of kind K has to be moved
from S to D. At the fourth task, the agent perceives kind
KS as the one aggregating most in S, and KD as the one
aggregating most in D. Then, the point of last task is that a
tuple of kind K is to be moved if and only if K is aggregating
in D but not in S.

The success of this distributed algorithm is clearly affected
by both probability and timing aspects. Will complete or-
dering be reached starting from a completely chaotic situa-
tion? Will complete ordering be reached starting from the
case where all tuples occur in just one tuple space? And if
ordering is reached, how many moving attempts are globally
necessary? These are the sort of questions that a designer
would like to address at the early stages of design without
actually resorting to implementation, and that simulation
can help addressing.

2.4 Simulation
In this section we describe our simulation scenario skip-

ping syntactic and semantic details as implemented in our
Maude library—the interested reader should refer to [4]. As
first case, we take the following initial tuple configuration.

< 0 @ (a[100])|(b[100])|(c[10])|(d[10]) > |

< 1 @ (a[0]) |(b[100])|(c[10])|(d[10]) > |

< 2 @ (a[10]) |(b[50]) |(c[50])|(d[10]) > |

< 3 @ (a[50]) |(b[10]) |(c[10])|(d[50]) >

It expresses the fact that we work with the tuple kinds
a, b, c, and d (representing four disjoint tuple tem-
plates), and with the tuple spaces identifiers 0, 1, 2,
and 3. The content of tuple space 0 is expressed
as < 0 @ (a[100])|(b[100])|(c[10])|(d[10]) >, mean-
ing we have 100 tuples of kind a, 100 of kind b, 10 of c,
and 10 of d. Note that this reference scenario provides the
same number of tuple kinds and tuple spaces, so that we
can seek for a final state where precisely one tuple kind ag-
gregates in one tuple space—studying the more general case
is left as future work, as discussed in Section 4. An exam-
ple of simulation trace is pictorially represented in Figure
2 (a), reporting the dynamics of the winning tuple in each
tuple space, showing e.g. that complete sorting is reached
at different times in each space. The chart in Figure 2 (b)
displays instead the evolution of the tuple space 0: notice
that only tuples of kind a aggregates there despite its initial
concentration was the same of tuples of kind b.

Although it would be possible to make some prediction,
we do not know in general which tuple space will host a
specific tuple kind at the end of sorting: this is an emergent
property of the system and is the very result of the interac-
tion of agents through tuple spaces! Indeed, the final result
is not completely random and the concentration of tuples
will evolve in the same direction most of the times. It is
interesting to analyse the trend of the entropy of each tuple
space as a way to estimate the degree of order in the system
through a single value: since the strategy we simulate is try-
ing to increase the inner order of the system we expect the
entropy to decrease, as actually shown in Figure 2 (c). If we
denote with qij the amount of tuples of the kind i within the
tuple space j, nj the total number of tuples within the tuple

356

(a) Dynamics of the winning tuple in each tuple space

(b) Dynamics of tuple space 0

(c) Entropy of tuple spaces

Figure 2: Charts for a simulation of the Collective
Sort

space j, and k the number of tuple kinds, then, the entropy
associated with the tuple kind i within the tuple space j is

Hij =
qij

nj
log2

nj

qij
(2)

and it is easy to notice that 0 ≤ Hij ≤ 1
k

log2 k. The entropy
associated with a single tuple space is then computed as

Hj =

Pk
i=1 Hij

log2 k
(3)

where the division by log2 k is introduced in order to obtain
0 ≤ Hj ≤ 1.

2.5 On Convergence
It first appeared that this solution always converges to

complete sorting from any initial configuration of tuples.
However, after some simulation attempts it is actually dis-
covered that there are certain states attracting the system
trajectory and having positive entropy, that is, characterised
by a non-complete degree of sorting. We call one such state
local minimum. An example of such minimum is the follow-
ing state:

< 0 @ (a[20])|(b[0]) |(c[0]) |(d[0]) > |

< 1 @ (a[140])|(b[0]) |(c[0]) |(d[0]) > |

< 2 @ (a[0]) |(b[260])|(c[0]) |(d[0]) > |

< 3 @ (a[0]) |(b[0]) |(c[80])|(d[80]) >

Tuple kind a is the only one aggregating in both spaces 0

and 1, and at the same time, kinds c and d aggregate both
in space 3. It is easy to recognise that once this state is
reached, no agent will ever move a tuple, since in no space
a tuple kind can be found that aggregates more than else-
where. Moreover, one such state is an attractor, for sim-
ulations starting from states sufficiently near to it appear
to converge back to this local minimum. The attempt of
solving this problem is what lead us to the solution actually
proposed in this paper, as discussed in next section.

3. SOLVING COLLECTIVE SORT

3.1 Modelling Vacuum
There are two main reasons why the local minimum anal-

ysed above cannot be escaped: (i) in spite tuple spaces 0

and 1 host a different number of tuples of kind a they are
perceived in the same way by agents, for they both have
100% of tuples a—instead, it would be desirable to consider
space 1 as a stronger aggregator—; (ii) there is no chance of
moving a tuple c or d away from space 3, for no other space
aggregates them at all.

These two issues can actually find a common solution by
more carefully analysing the brood sorting problem for so-
cial insects. There, an ant takes some brood and releases
it where a new place is found where brood has a greater
concentration. Such a concentration is expressed as quan-
tity of brood over a unit of space. That is, implicitly the
ant compares the amount of brood with that of “vacuum”
in the unit of space.

If a similar notion of vacuum would be defined in our
collective sort example, and e.g. the same amount of vac-
uum would exist in each space, that could in principle al-
low to solve the two issues above. On the one hand, space
0 could be recognised as having “less” tuples a than space

357

(a) Sorting time (b) Amount of tuples moved

Figure 3: Influence of vacuum tuples on performance (fixed and adaptive vacuum)

1—since space 1 occupies less space for vacuum, relatively—
and hence movements from space 0 to 1 could be promoted
most. On the other hand, some tuples c or d could be moved
from space 3 to another one following the reasonable idea
that “tuples that are not aggregating much should fill the
vacuum elsewhere”.

To evaluate this solution, we add to tuple spaces another
kind of tuple called vacuum, and initially suppose the quan-
tity of vacuum tuples in each space is the same and is fixed
statically since the beginning. The uniform read operation
can now possibly yield a vacuum tuple: the more such tuples
exist with respect to those to be sorted, the more this event
is likely. Then, following the above discussion, we change
the agent agenda as follows:

1. a destination tuple space D 6= S is drawn randomly;

2. a tuple kind K 6= vacuum is drawn randomly among
the tuple kinds occurring in S;

3. a urd is performed on S, yielding tuple of kind KS ;

4. a urd is performed on D, yielding tuple of kind KD;

5. if K = KD 6= KS a tuple of kind K is moved from S
to D.

6. if K 6= KS and KD = vacuum a tuple of kind K is
moved from S to D.

Now both KS and KD could be vacuum. Our last task says
that if the kind K is not aggregating locally (K 6= KS) and
we find significant vacuum in D (KD = vacuum), then we
move a tuple of kind K.

We considered as starting state the following:

< 0 @ (a[50])|(b[0]) |(c[0]) |(d[0]) > |

< 1 @ (a[50])|(b[0]) |(c[0]) |(d[0]) > |

< 2 @ (a[0]) |(b[100])|(c[0]) |(d[0]) > |

< 3 @ (a[0]) |(b[0]) |(c[100])|(d[100]) >

We noticed that independently from the number of vacuum
tuples, the system escapes the local minimum reaching com-
plete ordering, but such a number can potentially influence
effectiveness and efficiency of the solution. In Figures 3 (a)
and (b) (fixed vacuum) we display how the sorting time and
the number of tuples moved varies with the number of vac-
uum tuples in each tuple space—such number remains fixed
throughout the single simulation run. We note the follow-
ing: (i) performance is actually dependent on the number
of vacuum tuples; (ii) when vacuum tuples tend to equate
the final number of tuples in a tuple space, i.e. 100%, per-
formance degrades dramatically; (iii) sorting time has min-
ima values around 20 and 75 vacuum tuples; and (iv) the
number of tuples moved increases with the vacuum. What
we learn from these charts is that on the one hand, this
technique brings anyway to convergence, but on the other,
good performance is achieved if the number of vacuum tu-
ples is around 20% of the final number of tuples expected in
each tuple space. There in fact, we have a good combina-
tion of convergence time and resources allocated to sorting
(i.e., number of tuples moved). This is also a proper factor
for evaluating the network cost of ordering, since the tuple
traffic in the network is given by tuples moved and by the
number of agent cycles—since each time, an agent performs
exactly one remote uniform read.

3.2 Adapting Vacuum
If we require a truly self-organising solution, we must de-

vise a solution which works without knowing a priori any in-
formation about tuple distribution. Hence, we cannot stati-
cally design the number of vacuum tuples to be used in each
tuple space: an adaptive technique has to be used to make
this number dynamic, namely, to make vacuum adapting
to the situation at hand. In principle, here we seek for a
solution where vacuum is initially very low—guaranteeing
to move tuples in a proper way—and then, when/if we are
about to reach a local minimum, agents make vacuum lo-
cally increase guaranteeing to leave perilous states.

358

Informally, the idea is to increase vacuum each time an
agent discovers two spaces aggregating the same tuple, and
decrease vacuum when a tuple successfully moves towards
an aggregator. That is, we add to the above agent agenda
the following tasks:

7. if K = KD 6= KS drop one vacuum tuple from S

8. if K = KD = KS add one vacuum tuple to S

In particular, we start from one vacuum tuple, and make
sure that this level is never decreased. The charts in Figure
3 (a) and (b) (adaptive vacuum) also show with the horizon-
tal line how this new technique compares with the one with
fixed vacuum. Namely, the behaviour we obtain has aver-
age values of convergence time and tuples moved, staying
sufficiently far from divergence and from bad performance.

Moreover, further simulations we performed on systems
that converge without requiring the vacuum management
(as in Section 2) show that our adaptive vacuum man-
agement does not significantly impact their performance,
namely, it is a mechanism exploited on a by-need basis.

4. CONCLUSIONS AND FUTURE WORKS
In this article we focussed on stochastic aspects in the de-

signing of emergent coordination mechanisms—an emergent
issue in coordination models and in related research con-
texts. The collective sort problem discussed is a paradig-
matic one, which emphasises the typical unpredictability of
environment in coordination, which in tuple space scenar-
ios affect e.g. how tuples are configured in the distributed
space. Any attempt to find general mechanisms to achieve
global properties about such configurations will likely issue
the same problems we identified in collective sort: com-
plete/partial convergence, performance vs. resource usage,
need for adaptive mechanisms. Starting from the work in
[4], where the Maude library for simulation is described in
detail and the collective sort problem is sketched, in this
paper we addressed these problems.

The analysis of the collective sort problem and solution
in this paper is of course not complete, for several issues
are to be more precisely considered, such as: how the al-
gorithm works when the number of tuple spaces is different
from the number of tuple templates, whether the vacuum
mechanism can be further improved with respect to perfor-
mance, how the strategy works when the tuples configura-
tion change dynamically—that is, in a on-line scenario—and
so on. Other than this exploration, another interesting fu-
ture work is to apply our methodological approach to other
coordination scenarios, such as e.g. those suggested in the
context of SwarmLinda model.

5. REFERENCES
[1] Recursive porous agent simulation toolkit (repast),

2006. Available online at
http://repast.sourceforge.net/.

[2] Swarm, 2006. Available online at
http://www.swarm.org/.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems. Santa
Fe Institute Studies in the Sciences of Complexity.
Oxford University Press, Inc., 1999.

[4] M. Casadei, L. Gardelli, and M. Viroli. Simulating
emergent properties of coordination in Maude: the
collective sorting case. In C. Canal and M. Viroli,
editors, 5th International Workshop on Foundations of
Coordination Languages and Software Architectures
(FOCLASA’06), pages 57–75, CONCUR 2006, Bonn,
Germany, 31 Aug. 2006. University of Málaga, Spain.
Proceedings.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude
Manual. Department of Computer Science University
of Illinois at Urbana-Champaign, 2.2 edition,
December 2005. Version 2.2 is available online at
http://maude.cs.uiuc.edu.

[6] L. Gardelli, M. Viroli, and A. Omicini. On the role of
simulations in engineering self-organising MAS: The
case of an intrusion detection system in TuCSoN. In
S. A. Brueckner, G. Di Marzo Serugendo, D. Hales,
and F. Zambonelli, editors, Engineering
Self-Organising Systems, volume 3910 of LNAI, pages
153–168. Springer, 2006. 3rd International Workshop
(ESOA 2005), Utrecht, The Netherlands,
26 July 2005. Revised Selected Papers.

[7] H. Gutowitz. Complexity-seeking ants. In Deneubourg
and Goss, editors, Proceedings of the Third European
Conference on Artificial Life, 1993.

[8] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications with the tota
middleware. In Pervasive Computing and
Communications, 2004. PerCom 2004. Proceedings of
the Second IEEE Annual Conference on, pages 263–
273. IEEE, March 2004.

[9] R. Menezes and R. Tolksdorf. Adaptiveness in
linda-based coordination models. In G. D. M.
Serugendo, A. Karageorgos, O. F. Rana, and
F. Zambonelli, editors, Engineering Self-Organising
Systems: Nature-Inspired Approaches to Software
Engineering, volume 2977 of LNAI, pages 212–232.
Springer Berlin / Heidelberg, January 2004.

[10] R. D. Nicola, D. Latella, and M. Massink. Formal
modeling and quantitative analysis of Klaim-based
mobile systems. In SAC ’05: Proceedings of the 2005
ACM symposium on Applied computing, pages
428–435, New York, NY, USA, 2005. ACM Press.

[11] A. Omicini and E. Denti. From tuple spaces to tuple
centres. Science of Computer Programming,
41(3):277–294, Nov. 2001.

[12] A. Phillips. The Stochastic Pi Machine (SPiM), 2006.
Version 0.042 available online at
http://www.doc.ic.ac.uk/˜anp/spim/.

[13] C. Priami. Stochastic pi-calculus. The Computer
Journal, 38(7):578–589, 1995.

359

