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Abstract: We propose a methodological approach for tackling the early 
design stages of self-organising Multiagent Systems (MASs). We adopt an 
architectural pattern based on the Agents and Artefacts (A&A) metamodel: 
self-organisation mechanisms are added to an existing environment of artefacts 
by embedding them into environmental agents. We rely on a three-stage design 
approach with modelling, simulation and tuning, so as to identify a suitable 
design of environmental agents and their interaction with artefacts. The main 
objective is to design a MAS environment providing services that self-organise 
in response to the unpredictable dynamics of the agents exploiting them. 
 As a case study, we analyse the problem called collective sorting, a service 
for decentralised sorting of items in MAS environments that was inspired by 
social insects’ behaviour: the proposed solution features environmental agents 
and tuple spaces, whose design choices and evaluation have been driven by 
formal simulations. 
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1 Introduction 

Self-organisation is increasingly being regarded as an effective approach to tackle  
the complexity of modern systems. This approach seems to be compelling owing to  
the possibility of developing systems exhibiting complex dynamics and adapting to 
environmental perturbations without requiring a complete knowledge of future 
surrounding conditions. The self-organisation approach promotes the development of 
simple entities that, by locally interacting with others sharing the same environment, 
collectively produce the target global patterns and dynamics by emergence. Many 
biological systems can be modelled using a self-organisation approach; well-known 
examples include food foraging in ant colonies, nest building in termite societies, the 
comb pattern in honeybees, brood sorting in ants (Bonabeau et al., 1999; Camazine et al., 
2001). They have inspired the development of many artificial systems, such as 
decentralised coordination for automated guided vehicles (Weyns et al., 2005; Sauter 
et al., 2005), congestion avoidance in circuit-switched telecommunication networks 
(Steward and Appleby, 1994), manufacturing scheduling and control for vehicle painting 
(Cicirello and Smith, 2004) and self-organising peer-to-peer infrastructures (Babaoglu 
et al., 2002). Furthermore, principles of self-organisation are currently investigated in 
several research projects that may have industrial relevance in the near future; notable 
examples include the SWARM-BOTS project (Mondada et al., 2004), Amorphous 
Computing (Abelson et al., 2000) and Autonomic Computing (Kephart and Chess, 2003). 

However, the development of Self-organising Systems (SOSs) is driven by different 
principles with respect to traditional engineering. For instance, engineers typically  
design systems as a result of the composition of smaller elements, which are either 
software abstractions or physical devices, where composition rules depend on the 
reference paradigm (e.g., the object-oriented one), and typically produce predictable 
results. Conversely, SOSs display nonlinear dynamics, which can hardly be captured by 
deterministic models and, though robust with respect to external perturbations, are quite 
sensitive to changes in inner working parameters. In particular, engineering a SOS poses 
two big challenges: How can we design the individual entities to produce the target 
global behaviour? And, can we provide guarantees of any sort about the emergence of 
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specific patterns? Even though the importance of these issues is generally acknowledged, 
few efforts have been devoted to the study of an engineering support both from 
methodologies and tools – except for a few explorations in the Multiagent System (MAS) 
community (De Wolf et al., 2006; Bernon et al., 2007). 

In this article, we focus on methodological aspects concerning the early design stage 
of SOSs built by relying on the agent-oriented paradigm. With reference to the Agents 
and Artefacts (A&A) metamodel for MASs (Omicini et al., 2006; Ricci et al., 2006),  
we describe an architectural pattern that has been extracted from a recurrent solution in 
designing SOSs, as previously discussed in Gardelli et al. (2007b). This pattern is based 
on a MAS environment formed by artefacts (modelling nonproactive resources) and 
environmental agents (acting on artefacts so as to enable self-organising mechanisms). 
Then, we propose an approach for engineering systems that exploits this pattern and 
relies on simulation in the early design stage. In particular, the approach is articulated in 
three stages: 

1 modelling 

2 simulation 

3 tuning. 

In this approach, simulations of an abstract system model are used to drive design choices 
until the required quality properties are obtained, thus ensuring that the subsequent design 
steps actually lead to a correct implementation. 

To clarify the approach, we apply it to a case study called collective sorting, a  
strategy for decentralised item sorting in MAS environments (Viroli et al., 2007a). The 
environment is modelled as a flat set of tuple spaces as, for example, in Omicini and 
Zambonelli (1999), and the background sorting service is in charge of moving tuples until 
similar tuples are aggregated in the same space. Inspired by ants’ brood sorting 
(Deneubourg et al., 1991; Bonabeau et al., 1999), we show how our three-stage approach 
can be exploited to produce a basic strategy aimed at improving its quality properties in 
terms of convergence to full sorting. 

The remainder of the article is structured as follows: Section 2 describes the A&A 
metamodel and details the architectural pattern, providing motivations devised from  
self-organisation literature. Section 3 describes our simulation approach with respect to 
the architectural pattern. Section 4 exemplifies the concepts described in the paper 
through the case study of collective sorting. Finally in Section 5 we conclude and discuss 
future work. 

2 Towards self-organising MAS environments 

Agent-based computing is generally considered a good paradigm for accurately 
modelling SOSs. Indeed, the agent is a suitable abstraction for encapsulating the micro 
behaviours that eventually lead to self-organisation patterns at the social level. However, 
agents alone fail to capture those behaviours that are inherently distributed and non  
goal-oriented, but essential to many SOSs; consider as an example the process of 
pheromone evaporation, which is a fundamental brick of stigmergic systems (Bonabeau 
et al., 1999; Camazine et al., 2001). In particular, there is a class of processes that is  
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best modelled as a part of the environment rather than expressed in terms of agents. 
Accordingly, the environment is a fundamental concept for SOSs, and the method  
used for engineering MAS environments is therefore a key issue to inject SOS 
mechanisms into MASs. 

2.1 The role of environment in self-organising systems 

From the analysis of natural SOSs (Bonabeau et al., 1999; Camazine et al., 2001;  
Solé and Bascompte, 2006) and experience in prototyping artificial ones (Weyns et al., 
2005; Sauter et al., 2005; Casadei et al., 2007; Gardelli et al., 2007b; Mamei and 
Zambonelli, 2005), it is recognised that the environment plays a crucial role in the global 
SOS dynamics. A typical explanatory example is the case of stigmergy: as pointed out  
by Grassé (1959), among social insects, workers are driven in their activity by the 
environment. Indeed, in animal societies self-organisation is typically achieved by the 
interplay between individuals and the environment, such as the deposition of pheromone 
by ants or the movement of wooden chips by termites (Camazine et al., 2001). In 
particular, these interactions are responsible for the establishment and sustainment  
of a feedback loop; in the case of ant colonies, positive feedback is provided by ants 
depositing pheromones, while negative feedback is provided by the environment through 
evaporation (Camazine et al., 2001). 

When moving to artificial systems, and to MASs in particular, there are a few 
questions that need to be answered. The first one is where to embed self-organising 
mechanisms. The above discussion promotes the distribution of concerns between active 
components and the environment – in the MAS context, between agents and the 
environment. This partially frees agents from the burden of system complexity, and 
provides a more natural mapping for those non-goal-oriented behaviours. The second 
question is how to find the minimum requirements for an environment to support  
self-organisation. From the definition of self-organisation provided by Camazine et al. 
(2001) we can identify some basic requirements: 

• the environment should support indirect interactions among the components  
of a system 

• the environment should support some notion of locality 

• locality should affect interactions, e.g., by promoting local ones. 

Moreover, specific self-organising mechanisms may require an active environment, i.e., 
the presence of active processes in the environment, making the environment evolve to a 
suitable state; e.g., in pheromone-based systems, the environment may either provide a 
reactive evaporation service, or proactively act upon pheromone-like components to 
imitate the effect of evaporation. 

2.2 Engineering MAS environment: the A&A metamodel 

Software conceived according to the MAS paradigm is modelled as a composition of 
agents (autonomous entities situated in a computational or physical environment) that 
interact with each other and with environmental resources to achieve either individual or 
social goals (Weyns et al., 2007; Viroli et al., 2007b). Traditionally, the environment 
consists of a deployment context that provides communication services and access to 
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physical resources. In this context, MAS engineers design agents while the environment 
is just an output of the analysis stage. Recently, the environment has been recognised as 
an actual design dimension; then, MAS engineers can hide system complexity behind 
environmental services, freeing agents from specific responsibilities. In this article, we 
adopt the latter notion of environment, i.e., the part of the MAS outside agents that 
engineers should design so as to reach the objectives of the application at hand. 

In order to describe the environment, we have to provide suitable abstractions for 
environmental entities. As pointed out by Molesini et al. (2008), even though most of the 
current Agent-Oriented Software Engineering (AOSE) methodologies and metamodels 
provide little or no environment support, it is useful to adopt the A&A metamodel where 
a MAS is modelled by two fundamental abstractions: agents and artefacts (Omicini et al., 
2006; Ricci et al., 2006). Agents are autonomous proactive entities encapsulating  
control and driven by their internal goal/task (Figure 1, left). When developing a MAS, 
sometimes entities require neither autonomy nor proactivity to be correctly characterised. 
This is typical of entities that serve as tools to provide specific functionalities. These 
entities are the so-called artefacts. Artefacts are passive, reactive entities providing 
services and functionalities to be exploited by agents through a usage interface (Figure 1, 
right). It is worth noting that artefacts typically realise those behaviours that cannot or do 
not require to be characterised as goal-oriented (Omicini et al., 2006; Ricci et al., 2006). 
Artefacts mediate agent interactions, support coordination in social activities and embody 
the portion of the environment that is designed and controlled to support MAS activities. 

Figure 1 A&A metamodel featuring agents as proactive goal-driven entities, and artefacts as 
encapsulating services to be exploited by agents through a usage interface 

Artefact
 

2.3 An architectural pattern for self-organising environments 

The components of modern computational systems often need to interact with an 
environment populated by legacy systems. Hence, the environment can be either 
completely or partially given. This is subject to investigation during the analysis  
phase (Molesini et al., 2008). In the MAS context, during the design phase, resources  
are assigned to artefacts, providing a uniform way for agents to exploit resources. 
Unfortunately, in a scenario involving legacy systems, we may not have complete control 
over the environment, thus making it difficult to embed self-organising mechanisms 
within artefacts. Then, to inject self-* properties in MAS, we need to add a layer on top 
of existing environmental resources. 

To this purpose, we rely on the notion of environmental agent: such agents are 
responsible for managing artefacts to achieve the target self-* property. Hence 
environmental agents are seen as distinct from standard agents (also called user  
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agents), which exploit artefact services to achieve individual and social goals. This 
recurrent solution has been encoded in the form of an architectural pattern (Gardelli et al., 
2007b) with reference to the A&A metamodel. As shown in Figure 2, environmental 
agents act upon artefacts through a management interface. This interface may be  
public, i.e., accessible to all agents or, most likely, restricted and allowing access  
to operations typically granted to system administrators. A similar approach to achieve 
self-organisation, involving managers and managed entities, has been adopted in the 
Autonomic Computing community (Kephart and Chess, 2003). 

Figure 2 An architectural pattern for self-organising MAS featuring environmental agents 
responsible for sustaining feedback loop 

Artefact

 

Using this pattern produces several advantages. When working with legacy 
environmental resources – e.g., provided by an existing infrastructure – relying on 
additional environmental agents is the only viable solution to add new properties and 
behaviour, owing to a limited control on environmental resources. When developing 
systems from scratch, the use of this pattern allows different mechanisms to be isolated, 
thus achieving a finer control on the overall system. Furthermore, we are able to  
identify and suppress conflicting dynamics that may arise when exploiting different  
self-organising mechanisms at the same time (Gardelli et al., 2007b). It is worth noting 
that environmental agents differ from user agents because they play a special role in the 
system, bound within the environment as perceived by user agents. This is not in 
contradiction with previous works such as Omicini et al. (2006) and Ricci et al. (2006), 
but rather one step beyond; in fact, here user agents perceive the environment exactly  
in the same way, that is, populated only by artefacts, whereas environmental agents 
cannot interact with user agents, since they are somehow ‘encapsulated’ within the  
MAS environment. 
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This pattern can be successfully applied to embed self-organising mechanisms 
in MAS environments, especially to environmental services that do not natively support 
all the self-organisation features required. As an example we consider an environment 
populated by tuple spaces, provided by an existing coordination infrastructure as in 
Omicini and Zambonelli (1999), Mamei and Zambonelli (2005) and Weyns et al. (2005). 
In this context, agents are allowed to interact with a tuple space by using standard 
operations rd, in and out to read, remove and insert tuples. It could be interesting 
to enhance this environment with a background service for automatic tuple moving/ 
changing mechanisms. This could be used to cluster similar tuples in the same space, 
diffuse tuples in the neighbourhood, or make them fade with a certain timing, and so on. 
Hence, according to the pattern, this problem can be tackled by designing environmental 
agents with the goal of performing the service in an effective and useful way, and 
transparently, to user agents. Studying a similar case is in fact the goal of Section 4. 

3 Enhancing self-organising system design via simulation 

3.1 Background and motivations 

Currently, the development of agent-oriented systems is supported by several software 
engineering methodologies. Most methodologies were initially conceived to cover 
specific issues, and then evolved to encompass the whole software process. For instance, 
the Gaia methodology (Zambonelli et al., 2003) was mostly concerned with intra-agent 
problems, while the initial target of the SODA methodology (Molesini et al., 2006) was 
to tackle the social, interagent dimension. On the other hand, other methodologies 
restricted the domain of applicability to a specific class of MAS, such as ADELFE for the 
Adaptive MAS theory (Bernon et al., 2003). 

Concerns like embedding self-organising mechanisms within an existing MAS,  
or engineering an SOSs from scratch, raise peculiar issues that are not typical or so  
crucial in current AOSE methodologies. For example, as stated in Section 2.2, while  
the environment plays a key role in self-organisation, just a few of the current  
AOSE methodologies provide explicit support for it (Molesini et al., 2008). Furthermore, 
AOSE methodologies, as well as object-oriented ones, tend to focus on design-time 
aspects rather than run-time ones; in fact, it is common practice to assume that once a 
system has been designed, its structure will not change and will behave according to the 
specifications. The Autonomic Computing proposal suggests considering run-time issues 
at design-time; then, aspects such as maintenance become a functional requirement of the 
problem to be solved (Kephart and Chess, 2003), thus increasing the degree of autonomy 
and adaptiveness of the target system. Along this line, we promote the use of techniques 
that allow us to preview and analyse global system dynamics at design-time;  
indeed, when dealing with SOS, more attention should be devoted to observing the 
emergence of desired properties early in the design stage rather than waiting for the final 
implementation. In particular, when developing SOSs, we have to answer the following 
question: how can we design the individual environmental agent’s behaviour in order to 
ensure the emergence of the desired properties? To tackle this issue, two approaches are 
typically exploited: 
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1 devising an ad hoc strategy by decomposition that will solve the specific problem 

2 observing a system that achieves similar results, and trying to reverse-engineer  
its strategy. 

It is generally acknowledged that the former approach is applicable only to a limited  
set of simple scenarios; owing to the nonlinearity in entity behaviours, global system 
dynamics become quite difficult to be predicted. Instead, in the self-organisation 
community, the latter approach is commonly regarded as more fruitful; in nature, it is 
possible to recognise patterns that are effectively applicable to artificial systems 
(Babaoglu et al., 2006; De Wolf and Holvoet, 2007; Gardelli et al., 2007b; Bonabeau  
et al., 1999). Since it is quite unlikely to find a pattern that completely fits a given 
problem, it is common practice to rely on some modified and adjusted version. In the 
next section we will elaborate on the implications of these modifications. 

Once a suitable strategy has been identified and adapted, how can we guarantee that  
it will behave as expected? Given the specifications of a SOSs, how to ensure the 
emergence of the desired global dynamics is still an open issue. While automatic 
verification of properties is typically a viable approach with deterministic models, 
verification becomes more difficult and soon intractable when moving to stochastic 
models. It is then useful to resort to a different approach, possibly mixing formal  
tools and empirical evaluations, so as to support the analysis of the behaviour and 
qualities of a design. 

Before describing our approach in the next section, we would like to point out that  
it is not our goal to develop a brand-new complete methodology for MAS engineering. 
Instead, we would rather aim at integrating our approach within existing AOSE 
methodologies, and addressing the peculiar issues raised by self-organising MASs. For 
instance, by considering Gaia (Zambonelli et al., 2003), our approach could be seen as a 
way to direct early design phases: on the one hand, this could help the developer in 
defining responsibilities for agents and services of the environment by taking inspiration 
from patterns found in natural systems; on the other hand, it could make it possible to 
preview the global dynamics of the MAS and tune its behaviour before committing to a 
specific design solution. 

3.2 Designing environmental agents and their interactions 

As discussed in Section 2, in our approach environmental agents are used to embed  
self-organising mechanisms into a MAS environment. We assume that requirements have 
been collected and the analysis has been performed, in particular identifying the services 
to be performed by environmental agents; then our approach can be situated between the 
analysis and design phases, actually realising an early-design phase. In order to design 
environmental agents, we have first to provide a model for agents and environmental 
resources. We can then evaluate several strategies inspired by SOSs with the goal of 
discovering the one that could provide the quality attributes required for the application  
at hand. The model is analysed by simulation, then a precise environmental agents’ 
behaviour and a set of working parameters are devised via a tuning process. In particular, 
we articulate this approach in three phases, possibly to be executed in a cyclic way: 
Modelling, to develop an abstract formal specification of the system; Simulation, to  
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use such a specification to qualitatively and quantitatively investigate the dynamics of  
the system; and Tuning, to change model parameters and behaviour so as to adjust  
system dynamics. 

3.2.1 Modelling 

In the modelling phase we develop an abstract model of the system, providing a 
characterisation for: 

• user agents 

• artefacts 

• environmental agents. 

As far as artefacts are concerned, we can provide an accurate model of their behaviour 
with respect to the usage interface and set of services exposed – though it is often  
the case that a detailed description of the inner working is not available. Conversely,  
the repertoire of user agents’ behaviour may be too vast to be accurately modelled. 
Indeed, in open environments, it is basically impossible to entirely foresee the future 
dynamics of agents – self-organisation is used precisely to adapt to unpredicted 
situations. Then, it is necessary to abstract from their peculiarity, resorting to 
probabilistic or stochastic models of user agents’ behaviour. Models for these agents are 
developed in terms of usage of resources, i.e., with respect to the observable behaviour 
and by abstracting away from inner processes such as planning and reasoning. The 
accuracy of the user-agent internal model is not so crucial, since self-organisation is built 
on top of indirect interactions mediated by the environment. Hence, it is sufficient to 
know how user agents perceive and modify their environment. 

Once a suitable model for user agents and artefacts is provided, we move to the core 
part of modelling, that is, the characterisation of environmental agents. A suitable model 
for environmental agents is typically built on top of the services provided by artefacts, 
and functionally coupled with user agents’ behaviour in order to establish and sustain a 
feedback loop. A feedback loop is necessary in every SOS. For example, in ant colonies, 
ants deposit pheromones which diffuse and evaporate in the environment; then, by the 
perception of the pheromone gradient, ants can coordinate their movements. 

To find a candidate model for environmental agents, we can take inspiration from 
known SOSs and look for a model exhibiting or approximating the target dynamics. This 
step implies the existence of some sort of design-pattern catalogue, a required tool for an 
engineer of SOSs. Although this sort of catalogue does not exist yet, several efforts by 
different research groups are moving along this direction: several patterns with important 
applications in artificial systems have already been identified and characterised 
(Bonabeau et al., 1999; Babaoglu et al., 2006; De Wolf and Holvoet, 2007; Gardelli  
et al., 2007b). Hence, even though patterns that perfectly match the target system 
dynamics can hardly be found, it is still feasible to identify some patterns approximating 
such dynamics; however, this typically requires changes of some sort. Given the chaotic 
behaviour that sometimes characterises SOSs, modifications should be done with care 
since they require expertise in mechanisms underlying SOSs. Moreover, modifications 
would also require a simulation-based approach as discussed in Section 3.2.2. 
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Although the model may be provided in several ways, we favour the use of  
formal languages; in fact, formal languages allow not only for further automatic analysis, 
but also for ambiguity avoidance and precise selection of model features. For instance, 
given a specification and a suitable set of parameters, it is possible to analyse the  
system dynamics by means of simulation and formally verifying system properties. To 
this purpose, tools like PRISM-Probabilistic Symbolic Model Checker (Hinton et al., 
2006) or SPiM-Stochastic Pi Machine (Phillips and Cardelli, 2004) provide a satisfactory 
support; though such modelling languages are not explicitly tailored to MASs, they 
usually provide abstractions – such as processes or modules – that can somehow be 
assimilated to an agent. 

3.2.2 Simulation 

Given a formal specification of the system to investigate, before performing simulations 
to investigate system dynamics it is necessary to provide a suitable set of parameters for 
the model. The type of parameter depends on the kind of simulation we are interested in. 
However, since when dealing with self-organising MASs we mostly rely on stochastic 
simulation (capturing timing and probability aspects), such parameters are typically 
expressed in terms of rates of action, defined according to suitable statistical distributions 
– typically, an exponential distribution is used owing to the memoryless property (i.e., to 
generate new events it is not necessary to know the whole event history, but only the 
current state), as in Continuous-Time Markov Chains (Kulkarni, 1995). 

Hence, the main concern in the simulation phase is to devise proper system 
behaviours and valid ranges for the system parameters (action rates): we do not rely on 
any specific guideline for devising those parameters even though we recognise they 
should reflect the conditions in the deployment scenario, otherwise the simulations results 
would be meaningless. While parameters for artefacts can be accurately measured, user 
agents provide a major challenge since we cannot foresee all their possible behaviours. 
Hence, we have to make assumptions about artefact behaviours both from the qualitative 
(e.g., rational exploitation of resources) and quantitative (e.g., rate of actions and rate of 
arrivals/departures) standpoints. 

Once the parameters for artefacts and agents are available, we devise an initial set of 
parameters for environmental agents and perform standard statistical analysis upon 
simulation results. Then the parameters of environmental agents need to be tuned  
until the desired global dynamics are observed. At this stage, it is common to test the 
global system behaviour in different environmental conditions that are representative of 
expected or actual scenarios. 

3.2.3 Tuning 

In the tuning phase, environmental agents’ behaviour and working parameters are 
successively tuned until the desired dynamics are observed. It is worth noting that  
setting parameters to arbitrary values may lead to unrealistic scenarios. Furthermore, the 
working rate of environmental agents may affect the actual working rate of artefacts:  
in a realistic scenario, computational resources are typically limited; hence, increasing  
the working rate of environmental agents may require a decrease in the service rate of 
artefacts. Without considering this problem, the dynamics of the deployed system may 
significantly deviate from the expected ones. 
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Once the desired dynamics have been previewed, the set of parameters works as a 
coarse characterisation for an actual implementation. At the end of the tuning process, we 
may realise that the devised set of parameters does not satisfy performance expectations, 
features unrealistic values with respect to the execution environment, or deviates the 
system from the desired behaviour. In any of these scenarios, we cannot proceed to  
the actual design phase since the system is not likely to behave properly when deployed. 
Hence, backtracking the modelling choices and evaluating other modifications or 
approaches is required. Conversely, when a model meets the target dynamics, and the 
parameters lie within the allowed ranges, we can proceed by providing a more accurate 
statistical characterisation of system behaviours. However, since stochastic simulation 
provides a partial view of the possible system dynamics, accurate predictions about the 
system behaviour cannot be provided; i.e., the emergence of a given property is observed 
with a frequency that approximates the actual probability. Critical systems may hence 
require additional in-depth formal analysis. 

3.3 Applicability of the approach 

As previously stated, our approach is not to be considered as a complete methodology, 
but as a set of best practices devised from experience in modelling and prototyping 
artificial SOSs. Our goal is to introduce scientific analysis techniques and tools in a 
systematic manner to conduct the early design stage of MAS engineering. The practice of 
simulating before deploying is more common in fields where system deployment is much 
more complicated/expensive, or involves physical devices, e.g., in the case of collective 
robotics. Conversely, the use of simulation tools – even if well known – is not common 
practice in mainstream software engineering, despite the many advantages especially  
in engineering complex systems. A limitation of the approach is the dependence on  
the existence of a natural system that displays the desired, or similar, dynamics. 
However, to our knowledge no alternative exists, i.e., forward engineering is not  
feasible. Furthermore, the investigation of natural systems has already made it possible  
to solve several computer science problems (see Bonabeau et al. (1999) for a 
comprehensive discussion). 

As far as applicability is concerned, we suggest the use of this approach, along with 
architectural patterns, for every system featuring complex dynamics or self-organising 
mechanisms which can be adequately captured by the A&A metamodel. So, our approach 
is applicable to many distributed systems, including those not initially conceived as a 
MAS. Furthermore, the approach could be fruitfully applied to physical MASs, as in the 
case of collective robotics scenarios. 

In the context of software systems, we consider this approach particularly suitable for 
the coordination of large-scale distributed systems such as in stigmergy and pervasive 
computing. For instance, Linda-like tuple spaces provide a coordination medium that  
can be easily mapped to artefacts. There exist various incarnations of Linda in the  
shape of coordination middleware for MASs such as TOTA (Mamei and Zambonelli, 
2005), TuCSoN (Omicini and Zambonelli, 1999) and SwarmLinda (Menezes and 
Tolksdorf, 2003). Some of them, such as TOTA and SwarmLinda, already embed some 
mechanisms to support self-organisation. Within an environment populated by tuple 
spaces, interaction between agents and artefacts is reified by tuples. Hence, the role  
of environmental agents is to perturb the environment by properly moving tuples or 
manipulating them. In the first case, the objective is to make the same configuration 
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patterns emerge, e.g., grouping similar tuples as done in the example in the next section. 
In the second case, annotations such as timestamps and counters may be linked to tuples, 
supporting processes that require a partial history of events, e.g., pheromone evaporation. 

4 The case of collective sorting 

In this section we analyse the case study known as collective sorting (Viroli et al., 2007a) 
in order to exemplify our methodology for the early design of self-organising MAS 
environments. We refer to an environment where artefacts have the shape of tuple spaces 
and agents are allowed to insert and retrieve tuples on a content-based approach. This is a 
typical scenario of agent-mediated interaction, general enough to support a wide range of 
applications, from complex workflow engines (Ricci et al., 2002) to stigmergic MASs 
(Weyns et al., 2005; 2007; Sauter et al., 2005). 

A typical problem of environments based on tuple spaces is that it is generally 
difficult to retrieve the tuples of interest when these can be inserted in any tuple space of 
the net. A possible solution is to allow agents to find tuples on a similarity basis, e.g., by 
grouping similar tuples in the same tuple space and separating different tuples. As a 
consequence, if a tuple is found in a tuple space, similar ones are likely to be found later 
in the same space. Furthermore, an ordered environment allows for a better batch 
processing of ‘items’, e.g., for applying aggregation techniques, checking consistency, 
and so on. 

Collective sorting amounts to providing an environment that offers a ‘background’ 
sorting service. Given a set of N tuple spaces and a statically defined clustering of tuples 
into N kinds, collective sorting is about moving tuples towards the fully sorted situation 
where each space hosts only tuples of the same kind. Accordingly, sorting should proceed 
in dynamic and unpredictable ways, in which user agents keep interacting with tuple 
spaces, that is, moving, inserting and dropping tuples. Therefore, the tuple space that  
will eventually aggregate a certain kind is not to be decided a priori; rather it should  
be implicitly and probabilistically selected as tuples start aggregating in one space  
rather than another owing to the effect of multiple tuple movements – namely, in a  
self-organising style. This approach is meant to tackle robustness, which is regarded  
here as more important than performance: we need sorting to be a property that 
eventually emerges in spite of external interactions. Of course, the more user agents keep 
altering tuple configurations, the more resources should be devoted to sorting in order to 
achieve convergence. 

In conformity to the architecture described in Section 2, the sorting task is hence 
assigned to a set of environmental agents, whose goal is to keep the environment ordered 
as much as possible. In this section we apply the proposed approach to provide a sound 
model of the behaviour of such agents. Taking inspiration from a similar problem  
– brood sorting in ant colonies – in Step 1 we identify a possible model for the behaviour 
of environmental agents. In Step 2 we discuss the outcomes of several simulations of 
system behaviour, showing that the solution is not completely adequate, for it does  
not always lead to full sorting. In Step 3 we then tune the system model by introducing a 
mechanism resembling simulated annealing. Further simulations show the adequacy of 
the new model, and emphasise the behaviour of sorting during user-agent interactions. 



   

 

   

   
 

   

   

 

   

    Designing self-organising environments with agents and artefacts 183    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

4.1 Identifying a suitable approach in nature 

Collective sorting in distributed tuple spaces is reminiscent of a classical problem in 
robotics known as segregation, in which robots roam the ground with the goal of finding, 
grouping and separating items. 

Solutions to this problem are typically searched for in nature, which is a rich source 
of simple but robust strategies. Segregation has already been manifested by social insects 
in brood sorting (Bonabeau et al., 1999). When organising the surrounding physical 
environment, ants need to group and to keep broods and larvae separate from each other. 
Although ant behaviour is still not fully understood, there are several models able to 
mimic the dynamics of the system. Ants wander randomly and feature a behaviour 
modelled by two probabilities: the probability to pick up (Pp) and drop (Pd) an item. The 
idea is that an ant: 

• picks up an item if its concentration is lower than the one measured in  
previous experience 

• starts wandering randomly 

• drops the item in a place featuring a concentration higher than where the item was 
picked up. 

The ant-based solution to brood sorting is intrinsically self-organising; in fact, ants  
are guided by spatially local observations and motivated only by the need for picking 
items up where concentration is low, and dropping them where concentration is high. 
Such numerous interactions make full sorting (i.e., the segregation pattern) emerge at the 
global level. Sorting performance is suboptimal – i.e., noncomparable with solutions 
based on global observations – but intrinsically robust; indeed, it is able to promptly react 
to changes in the environment (e.g., new brood, larvae, or ants are dynamically added or 
removed), faults like an environment split (e.g., a barrier splitting the ground in two 
parts) and local malfunctions (e.g., ants behaving in a completely different way). As a 
consequence, it is interesting to seek a solution to collective sorting by taking inspiration 
from the ant-based solution to brood sorting. 

However, as already discussed, the above solution needs to be significantly adapted 
since the application scenarios of brood sorting and collective sorting feature key 
differences. First of all, our scenario is not a continuous environment, featuring instead a 
set of N tuple spaces, each of them being a concentrated, conceptually unlimited bag of 
tuples. Secondly, our environmental agents are not likely to move and carry tuples. 
Rather, for obvious performance reasons, these agents should reside in one of the N sites 
and send tuples away when needed. Finally, instead of perceiving items on a locality 
basis, environmental agents should be able to look for tuples in either a local or a remote 
tuple space – with the latter operation obviously being more expensive. 

4.2 Step 1: Modelling collective sorting 

We consider N environmental agents, also called sorting agents, each situated in a 
different site hosting one of the N tuple spaces. Each agent is hence assigned to one tuple 
space, which can be regarded as a tuple space local to the agent. Interactions with this 
tuple space are less expensive than interactions with other tuple spaces. Similarly to  
ants, an agent can perform only partial observations on the system, i.e., observations on 
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the local tuple space (where the item may be picked up) and observations on a remote 
tuple space chosen randomly (where the item may be dropped). According to such 
observations, if it can be inferred that a tuple should be removed from the local tuple 
space, the agent will locally remove the tuple and move it to a remote tuple space. This 
observation-action cycle is executed by adopting a fixed sorting-agent rate r, and a global 
sorting-agent rate which is equal to N * r – basically the number of moving attempts per 
time unit. This scenario is depicted in Figure 3. 

Figure 3 Basic architecture for collective sorting 

 

Therefore, each agent features the goal of moving tuples away from its local  
tuple space whenever they do not form a collection. The protocol of each agent can be 
described as follows: 

• A remote tuple space R is drawn randomly. 

• A ‘uniform rd’ operation is performed on the local tuple space (L), yielding a tuple 
of kind KL. 

• A ‘uniform rd’ operation is performed on R, yielding a tuple of kind KR. 

• If KL ≠ KR, a tuple of kind KR is moved from L (if any exists there) to R. 

The uniform rd operation, also called urd, is an operation by which an agent can read 
any tuple from a tuple space, i.e., every tuple features the same probability of being 
retrieved. If an execution of urd on a tuple space yields a tuple of kind K, that tuple 
space likely has a high concentration of tuples of kind K. Consequently, K is supposed to 
be a good aggregator for the tuple space. After executing the third task, the agent knows 
that space L is an aggregator for KL tuples and R an aggregator for KR tuples. 
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Accordingly, the rationale behind the fourth task is that if KR and KL are different, the 
agent can fruitfully send a tuple of kind KR from L to R, so that both KR in R and KL in L 
become stronger aggregators. 

This first solution can be turned into any stochastic specification language (Hinton 
et al., 2006; Phillips and Cardelli, 2004). We relied on the stochastic simulation library 
for the MAUDE term-rewriting language discussed in Casadei et al. (2007), though any 
other language could be used. 

4.3 Step 2: Simulating collective sorting 

The observations and the decisions taken by the agent are affected by probability, so the 
correctness of this distributed algorithm needs to be checked by simulation, in order to 
verify whether it is possible to achieve complete ordering from any initial situation, even 
the most chaotic one. As an example, consider an initial chaotic configuration where 
every tuple space features the same concentration of tuples for each kind. Supposing  
N = 4, the corresponding system state can be represented by the syntax: 

T1[25,25,25,25],T2[25,25,25,25],T3[25,25,25,25],T4[25,25,25,25] 

expressing the state where each tuple space Ti features 25 tuples per kind (the different 
kinds labelled K1, K2, K3 and K4). An example of a simulation trace is pictorially 
represented in Figure 4(a), which reports the dynamics of the ‘winning’ tuple in each 
tuple space, namely, the tuple that eventually aggregates there. Note that tuples reach 
their full aggregation level at different instants, and mostly in unpredictable ways. As a 
further example, the chart in Figure 4(b) shows the temporal evolution of tuple space T1: 
notice that only tuples of kind K1 aggregate there even though the initial concentration 
was the same for all kinds. For instance, around step 1000 it is easy to recognise a 
bifurcation promoting aggregation of tuples of kind K1 instead of K2. 

It is also interesting to analyse the trend of the entropy for each tuple space as a way 
to estimate the degree of order in the system through a single value: since the simulated 
strategy tries to increase the inner order of the system, we expect the entropy to decrease 
to zero as shown in Figure 4(c). The entropy associated with a tuple space is computed  
in the standard way (Casadei et al., 2007), by considering the concentration for each 
single tuple kind and normalising the total entropy in a range between 0 and 1. Each  
chart reports the number of protocol instances (moving attempts) executed by agents. 
Supposing a single-agent rate of 0.25, the global agent rate is 1.0, with an average of one 
simulation step per time unit – meaning that full sorting is reached after 3000 time units. 
Other simulations performed with a different number of tuples and tuple spaces show 
similar qualitative results. 

In general, the outcome of a simulation should highlight the system performance, but 
it can sometimes show flaws in the design. In our case, though it first appeared that the 
proposed model always leads to complete sorting from any initial configuration of tuples, 
more thorough simulations showed that there are certain stable states attracting the 
system trajectory and having positive entropy, that is, characterised by a noncomplete 
degree of sorting. A state of this kind is called local minimum (for entropy). An example 
of such a minimum is the following state, obtained by the traces shown in Figure 5(a) and 
Figure 5(b): 

T1[100,0,0,0],T2[0,69,0,0],T3[0,31,0,0]),T4[0,0,100,100] 
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Figure 4 Charts of a simulation trace: (a) winning tuple; (b) tuple space T1; (c) entropy in each 
tuple space 
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Figure 5 Charts of a simulation trace to a local minimum: (a) tuple kind K2 aggregating in spaces 
T2 and T3; (b) both kinds K3 and K4 aggregating in space T4 

 

Tuple kind K2 is the only one aggregating in both spaces T2 and T3; at the same time, 
kinds K3 and K4 both aggregate in space T4. It is easy to recognise that once this local 
minimum state is reached, agents will not move tuples any longer since it is not possible 
to find a space where a tuple aggregates less than elsewhere. Such a state can then be 
considered an attractor; in fact, simulations starting from states sufficiently near to them 
appear to converge back to this local minimum. This makes the described strategy 
inadequate, so a tuning of the model is required in order to find a complete solution. 
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4.4 Step 3: Tuning collective sorting 

The local minimum analysed above cannot be escaped owing to the fact that the 
developed strategy does not explicitly avoid the case in which the same tuple kind 
aggregates in two different tuple spaces. Indeed, owing to the fourth step in the agent’s 
protocol, nothing is done when KL = KR. Hence, the same tuple kind may fully aggregate 
on two different tuple spaces, leading to the complete aggregation of the two remaining 
tuple kinds in a single tuple space as shown in the above local minimum. 

These two issues can be solved by more carefully analysing the brood sorting 
problem for social insects. There, an ant takes an item and releases it when a new place 
featuring a greater concentration of items is found. The concentration is expressed as 
quantity of brood over unit of space. Implicitly the ant is able to compare the amount of 
brood to the standard quantity represented by the amount of vacuum. 

To implement a mechanism supporting this idea, we add another kind of tuple, called 
noise, and initially suppose it to be constant throughout sorting. Now an observation  
by a urd can be ‘perturbed’, yielding a noise tuple. As in the previous model, if the  
local and remote observations are different, a tuple is moved from the local space to  
the remote one. Moreover, if an observation is perturbed by the reading of a noise tuple, 
the correctness of moving is now probabilistically altered. However, the probability of 
picking a tuple in T3 is expected to be higher than in T2. This should promote tuples of 
kind K2 to leave T3 more quickly. As a result, this mechanism is expected to globally 
result in complete sorting. 

This mechanism resembles the concept of simulated annealing (Kirkpatrick et al., 
1983), where a perturbation is added to an optimisation algorithm in order to avoid  
the risk of finding a nonoptimal solution. Such a perturbation is initially high and 
continuously fades as the system finds new solutions, until it completely disappears. 

In our case, the occurrence of noise tuples models such a perturbation. What then 
should the dynamics of noise through time be? A possibility would be to initially set  
an equal amount of noise in every tuple space, either leaving it unaltered during a system 
life cycle, or decreasing it at a fixed rate. However, this choice would require setting  
the amount of noise at design-time, while an optimal value depends on the average 
occupation of tuple spaces during system execution (Viroli et al., 2007a). This situation is 
not appealing since we want our approach to work independently of the number of tuples 
in the system. What we are actually looking for is a fully adaptive noise mechanism, 
where an initially very low concentration of noise increases as the system approaches a 
local minimum, and decreases if the minimum is escaped. In this way, we could expect 
the system performance to be only slightly affected if the system stays sufficiently far 
from local minima, and on the other hand, the noise production may become significant 
only in unfortunate cases where local minima are approached. 

To achieve this result, we will manage noise as follows: 

• initially, every tuple space features a concentration of only one noise tuple. 

• whenever two tuple spaces seem to aggregate the same tuple kind, noise is increased. 

• when some tuple is correctly transferred – without an observation perturbed by noise 
– noise is decreased. 
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Accordingly, we change the environmental agent design by relying on the  
following protocol: 

1 A remote tuple space R is drawn randomly. 

2 A uniform rd operation is performed on L, yielding a tuple of kind KL. 

3 A uniform rd operation is performed on R, yielding a tuple of kind KR. 

4 If KL ≠ KR ≠ noise, a tuple of kind KR is moved from L to R. 

5 If KL ≠ KR = noise, a tuple of kind KL is moved from L to R. 

6 If noise ≠ KR = KL, noise is increased by 1 in L. 

7 If noise ≠ KL ≠ KR ≠ noise, noise is decreased by 1 in L. 

Now, this protocol allows the situation where both KL and KR are noise. The fourth and 
fifth tasks say that different observations in L and R should always cause transfer: if KR is 
not noise, a KR tuple is moved to R, otherwise a KL tuple is moved to R. The sixth task 
increases noise if L and R are aggregating (nonnoise) tuples of the same kind (KR = KL), 
and finally the seventh task decreases noise if a nonperturbed transfer is executed. 

Considering now the worst case of a symmetric local minimum: 

T1[100,100,0,0],T2[0,0,50,0],T3[0,0,50,0],T4[0,0 ,0 ,100], 

we expect noise to start increasing both in tuple space T2 and tuple space T3. At some 
point, movement of K3 tuples between T2 and T3 occurs since some noise is observed. 
Owing to a bifurcation effect, if either space T2 or T3 features a concentration of K3 
tuples greater than noise, more K3 tuples are transferred there, making that space 
eventually aggregate K3 tuples. Accordingly, the other tuple space is emptied, loses noise 
tuples and becomes the target of tuples of kind K1 and/or K2. This is actually what can 
be observed from the traces in Figure 6(a) and Figure 6(b), showing how the local 
minimum is escaped in spaces T2 and T1. In both cases we can see that, as noise tuples 
increase, the system escapes the local minimum configuration, leading to the fading of 
noise tuples as a consequence. 

More simulations performed on this solution show that: 

• using noise slightly affects performance, for systems typically stay away from local 
minima and generate little noise 

• starting from a local minimum, the system is always able to escape the  
local minimum 

• full sorting is always reached 

• these results are independent of the number N of tuple spaces (and kinds). 
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Figure 6 Charts of a simulation trace escaping from a local minimum: (a) situation in space T2: 
winning tuple and noise in evidence; (b) situation in space T1: kind K3 leaves the space 

 

4.5 Evaluation of reactiveness 

Having found a promising solution, it is interesting to get back to simulation. In this 
section we report the final results, and evaluate interesting system parameters to be used 
in subsequent steps of MAS design. 

The main purpose of solving the collective sorting problem for tuple spaces using a  
self-organising approach is to tackle unpredictable interactions with the environment. 

The typical usage scenario includes user agents exploiting the coordination service 
provided by tuple spaces, and inserting and removing tuples. The details of this behaviour 
cannot be known a priori, so sorting should be able to react to changes in the surrounding 
conditions in a fully adaptive way. This section shows how the ratio between user agent 
rate and sorting agent rate, called perturbation/sorting ratio, influences the result of 
sorting. To this end, we keep the global sorting rate fixed to 1.0 and include a change rate 
for user agents in the simulation, that is, the rate by which a user agent randomly moves a 
tuple from one space to another. Starting from an initially sorted configuration of tuples 
(400 tuples, N = 4) and depending on the change rate, we can easily expect that: 



   

 

   

   
 

   

   

 

   

    Designing self-organising environments with agents and artefacts 191    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

• full sorting is almost always maintained 

• a certain level of (partial) sorting can be maintained 

• the system becomes more and more unsorted as time passes. 

The evolution through such situations is reported in Figure 7, where each chart shows the 
evolution of entropy over time for different rates. 

Figure 7 Evolution of entropy with different perturbation/sorting ratio 

 

As shown in Figure 8, the key factor is the perturbation/sorting ratio, which gives a clear 
indication of the adequacy of sorting resources, in terms of the maximum guaranteed 
level of entropy. Along with the identified environmental agent behaviour, the bound of 
the perturbation/sorting ratio, set to 0.5, is a critical system parameter that can be 
revealed only by simulation and then may be exploited in subsequent design steps (not 
discussed here). For instance, a form of load-balancing is required to make sure that the 
resources of sorting are adequate and self-adaptable to the current degree of disorder, i.e., 
they increase when needed and then decrease. Techniques related to the prey-predator 
approach as studied, for example, by Gardelli et al. (2006; 2007a) could be evaluated in 
the subsequent steps of design. 
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Figure 8 Maximum entropy depending on perturbation/sorting ratio 

 

5 Conclusion 

In this article we discussed an approach to drive the early-design phase in the engineering 
of self-organising MASs. In particular, the approach is based on the A&A metamodel, 
which describes a MAS in terms of agents and artefacts. With respect to the metamodel, 
we introduced the role of environmental agents in the form of an architectural pattern: 
such agents are responsible for those environmental processes/behaviours needed to  
close the feedback loop together with other agents. Hence, in our approach, designing a  
self-organising MAS consists in properly designing environmental agents. 

Since the dynamics of SOSs tend to be complex, we resort to stochastic simulations 
in order to design environmental agents. In particular, the approach is articulated in three 
steps: modelling, simulation and tuning. The advantages of using simulation in the 
software engineering process are typically overlooked; recently, however, simulation has 
been gaining consensus in the MAS community for tackling complex-system design  
(De Wolf et al., 2006; Bernon et al., 2007; Fortino et al., 2006; Uhrmacher, 2002). 

As a case for applying this method, we considered the problem of decentralised 
sorting in environments built upon tuple spaces: specifically, the proposed solution 
clusters similar tuples in the same space while separating different tuples. The solution to 
this problem, called collective sorting, has been initially inspired by the swarm 
intelligence problem known as brood sorting (Deneubourg et al., 1991; Bonabeau et al., 
1999). To improve the algorithm convergence, we introduced noise tuples that allow 
local minima to be avoided by perturbing the tuple-space state. This approach 
conceptually resembles simulated annealing. 

Through this case study, we can argue that SOSs can hardly be designed  
without resorting to simulation-driven approaches from the early-design phase. 
Furthermore, the use of environmental agents is seemingly unavoidable when using 
existing infrastructures, such as tuple spaces, and promotes a neat separation between 
environmental services and self-organising mechanisms. 
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We also identified two main future research developments: 

1 the integration between the presented approach and existing AOSE methodologies 

2 the adoption of formal-analysis techniques and model-checking tools for validating 
simulation results, and for characterising target system behaviour in a more  
accurate way. 
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