

 Int. J. Agent-Oriented Software Engineering, Vol. 2, No. 2, 2008 171

 Copyright © 2008 Inderscience Enterprises Ltd.

Designing self-organising environments with agents
and artefacts: a simulation-driven approach

Luca Gardelli*, Mirko Viroli,
Matteo Casadei and Andrea Omicini
Alma Mater Studiorum–Università di Bologna
Via Venezia 52, 47023 Cesena, Italy
Fax: +39 0547339208
E-mail: luca.gardelli@unibo.it
E-mail: mirko.viroli@unibo.it
E-mail: m.casadei@unibo.it
E-mail: andrea.omicini@unibo.it
*Corresponding author

Abstract: We propose a methodological approach for tackling the early
design stages of self-organising Multiagent Systems (MASs). We adopt an
architectural pattern based on the Agents and Artefacts (A&A) metamodel:
self-organisation mechanisms are added to an existing environment of artefacts
by embedding them into environmental agents. We rely on a three-stage design
approach with modelling, simulation and tuning, so as to identify a suitable
design of environmental agents and their interaction with artefacts. The main
objective is to design a MAS environment providing services that self-organise
in response to the unpredictable dynamics of the agents exploiting them.
 As a case study, we analyse the problem called collective sorting, a service
for decentralised sorting of items in MAS environments that was inspired by
social insects’ behaviour: the proposed solution features environmental agents
and tuple spaces, whose design choices and evaluation have been driven by
formal simulations.

Keywords: collective sorting; self-organisation; emergence; methodology;
simulation; tuning; pattern; environment; Multiagent System; MAS; artefact.

Reference to this paper should be made as follows: Gardelli, L., Viroli, M.,
Casadei, M. and Omicini, A. (2008) ‘Designing self-organising environments
with agents and artefacts: a simulation-driven approach’, Int. J. Agent-Oriented
Software Engineering, Vol. 2, No. 2, pp.171–195.

Biographical notes: Luca Gardelli studied Computer Science and Engineering
at the Alma Mater Studiorum–Università di Bologna, Italy. Since 2005, he
has been a PhD student in Computer Science in the Department of Electronics,
Informatics and Systems (DEIS) at the Alma Mater.

Mirko Viroli has been an Associate Researcher since October 2002 at the
Department of Electronics, Informatics and Systems (DEIS) of the Alma Mater
Studiorum–Università di Bologna, Italy. He received his Laurea degree in
Computer Engineering in October 1997 and his PhD in Computer Engineering
in 2003, both from the Alma Mater. He has written over 100 articles on
computational models and languages applied to coordination, agent-based
systems, software engineering and programming languages, published in
international journals, books, conferences and workshops.

 172 L. Gardelli et al.

Matteo Casadei received his Laurea degree in Computer Science Engineering
in 2005 from the Alma Mater Studiorum–Università di Bologna, Italy.
Currently, he is a PhD student in Computer Science Engineering at the
Department of Electronics, Informatics and Systems (DEIS) of the Alma Mater.

Andrea Omicini is a Professor at the Department of Electronics, Informatics
and Systems (DEIS) of the Alma Mater Studiorum–Università di Bologna,
Italy. He received his Laurea degree in Electronic Engineering in February
1991 and his PhD in Computer Engineering in November 1995, both
from the Alma Mater. He has written over 150 articles on coordination,
software infrastructures, internet technologies, agent-based systems,
artificial intelligence, software engineering and programming languages,
published in international journals, books, conferences and workshops. He has
edited 15 books and guest-edited 10 international journal special issues on
agent-related issues.

1 Introduction

Self-organisation is increasingly being regarded as an effective approach to tackle
the complexity of modern systems. This approach seems to be compelling owing to
the possibility of developing systems exhibiting complex dynamics and adapting to
environmental perturbations without requiring a complete knowledge of future
surrounding conditions. The self-organisation approach promotes the development of
simple entities that, by locally interacting with others sharing the same environment,
collectively produce the target global patterns and dynamics by emergence. Many
biological systems can be modelled using a self-organisation approach; well-known
examples include food foraging in ant colonies, nest building in termite societies, the
comb pattern in honeybees, brood sorting in ants (Bonabeau et al., 1999; Camazine et al.,
2001). They have inspired the development of many artificial systems, such as
decentralised coordination for automated guided vehicles (Weyns et al., 2005; Sauter
et al., 2005), congestion avoidance in circuit-switched telecommunication networks
(Steward and Appleby, 1994), manufacturing scheduling and control for vehicle painting
(Cicirello and Smith, 2004) and self-organising peer-to-peer infrastructures (Babaoglu
et al., 2002). Furthermore, principles of self-organisation are currently investigated in
several research projects that may have industrial relevance in the near future; notable
examples include the SWARM-BOTS project (Mondada et al., 2004), Amorphous
Computing (Abelson et al., 2000) and Autonomic Computing (Kephart and Chess, 2003).

However, the development of Self-organising Systems (SOSs) is driven by different
principles with respect to traditional engineering. For instance, engineers typically
design systems as a result of the composition of smaller elements, which are either
software abstractions or physical devices, where composition rules depend on the
reference paradigm (e.g., the object-oriented one), and typically produce predictable
results. Conversely, SOSs display nonlinear dynamics, which can hardly be captured by
deterministic models and, though robust with respect to external perturbations, are quite
sensitive to changes in inner working parameters. In particular, engineering a SOS poses
two big challenges: How can we design the individual entities to produce the target
global behaviour? And, can we provide guarantees of any sort about the emergence of

 Designing self-organising environments with agents and artefacts 173

specific patterns? Even though the importance of these issues is generally acknowledged,
few efforts have been devoted to the study of an engineering support both from
methodologies and tools – except for a few explorations in the Multiagent System (MAS)
community (De Wolf et al., 2006; Bernon et al., 2007).

In this article, we focus on methodological aspects concerning the early design stage
of SOSs built by relying on the agent-oriented paradigm. With reference to the Agents
and Artefacts (A&A) metamodel for MASs (Omicini et al., 2006; Ricci et al., 2006),
we describe an architectural pattern that has been extracted from a recurrent solution in
designing SOSs, as previously discussed in Gardelli et al. (2007b). This pattern is based
on a MAS environment formed by artefacts (modelling nonproactive resources) and
environmental agents (acting on artefacts so as to enable self-organising mechanisms).
Then, we propose an approach for engineering systems that exploits this pattern and
relies on simulation in the early design stage. In particular, the approach is articulated in
three stages:

1 modelling

2 simulation

3 tuning.

In this approach, simulations of an abstract system model are used to drive design choices
until the required quality properties are obtained, thus ensuring that the subsequent design
steps actually lead to a correct implementation.

To clarify the approach, we apply it to a case study called collective sorting, a
strategy for decentralised item sorting in MAS environments (Viroli et al., 2007a). The
environment is modelled as a flat set of tuple spaces as, for example, in Omicini and
Zambonelli (1999), and the background sorting service is in charge of moving tuples until
similar tuples are aggregated in the same space. Inspired by ants’ brood sorting
(Deneubourg et al., 1991; Bonabeau et al., 1999), we show how our three-stage approach
can be exploited to produce a basic strategy aimed at improving its quality properties in
terms of convergence to full sorting.

The remainder of the article is structured as follows: Section 2 describes the A&A
metamodel and details the architectural pattern, providing motivations devised from
self-organisation literature. Section 3 describes our simulation approach with respect to
the architectural pattern. Section 4 exemplifies the concepts described in the paper
through the case study of collective sorting. Finally in Section 5 we conclude and discuss
future work.

2 Towards self-organising MAS environments

Agent-based computing is generally considered a good paradigm for accurately
modelling SOSs. Indeed, the agent is a suitable abstraction for encapsulating the micro
behaviours that eventually lead to self-organisation patterns at the social level. However,
agents alone fail to capture those behaviours that are inherently distributed and non
goal-oriented, but essential to many SOSs; consider as an example the process of
pheromone evaporation, which is a fundamental brick of stigmergic systems (Bonabeau
et al., 1999; Camazine et al., 2001). In particular, there is a class of processes that is

 174 L. Gardelli et al.

best modelled as a part of the environment rather than expressed in terms of agents.
Accordingly, the environment is a fundamental concept for SOSs, and the method
used for engineering MAS environments is therefore a key issue to inject SOS
mechanisms into MASs.

2.1 The role of environment in self-organising systems

From the analysis of natural SOSs (Bonabeau et al., 1999; Camazine et al., 2001;
Solé and Bascompte, 2006) and experience in prototyping artificial ones (Weyns et al.,
2005; Sauter et al., 2005; Casadei et al., 2007; Gardelli et al., 2007b; Mamei and
Zambonelli, 2005), it is recognised that the environment plays a crucial role in the global
SOS dynamics. A typical explanatory example is the case of stigmergy: as pointed out
by Grassé (1959), among social insects, workers are driven in their activity by the
environment. Indeed, in animal societies self-organisation is typically achieved by the
interplay between individuals and the environment, such as the deposition of pheromone
by ants or the movement of wooden chips by termites (Camazine et al., 2001). In
particular, these interactions are responsible for the establishment and sustainment
of a feedback loop; in the case of ant colonies, positive feedback is provided by ants
depositing pheromones, while negative feedback is provided by the environment through
evaporation (Camazine et al., 2001).

When moving to artificial systems, and to MASs in particular, there are a few
questions that need to be answered. The first one is where to embed self-organising
mechanisms. The above discussion promotes the distribution of concerns between active
components and the environment – in the MAS context, between agents and the
environment. This partially frees agents from the burden of system complexity, and
provides a more natural mapping for those non-goal-oriented behaviours. The second
question is how to find the minimum requirements for an environment to support
self-organisation. From the definition of self-organisation provided by Camazine et al.
(2001) we can identify some basic requirements:

• the environment should support indirect interactions among the components
of a system

• the environment should support some notion of locality

• locality should affect interactions, e.g., by promoting local ones.

Moreover, specific self-organising mechanisms may require an active environment, i.e.,
the presence of active processes in the environment, making the environment evolve to a
suitable state; e.g., in pheromone-based systems, the environment may either provide a
reactive evaporation service, or proactively act upon pheromone-like components to
imitate the effect of evaporation.

2.2 Engineering MAS environment: the A&A metamodel

Software conceived according to the MAS paradigm is modelled as a composition of
agents (autonomous entities situated in a computational or physical environment) that
interact with each other and with environmental resources to achieve either individual or
social goals (Weyns et al., 2007; Viroli et al., 2007b). Traditionally, the environment
consists of a deployment context that provides communication services and access to

 Designing self-organising environments with agents and artefacts 175

physical resources. In this context, MAS engineers design agents while the environment
is just an output of the analysis stage. Recently, the environment has been recognised as
an actual design dimension; then, MAS engineers can hide system complexity behind
environmental services, freeing agents from specific responsibilities. In this article, we
adopt the latter notion of environment, i.e., the part of the MAS outside agents that
engineers should design so as to reach the objectives of the application at hand.

In order to describe the environment, we have to provide suitable abstractions for
environmental entities. As pointed out by Molesini et al. (2008), even though most of the
current Agent-Oriented Software Engineering (AOSE) methodologies and metamodels
provide little or no environment support, it is useful to adopt the A&A metamodel where
a MAS is modelled by two fundamental abstractions: agents and artefacts (Omicini et al.,
2006; Ricci et al., 2006). Agents are autonomous proactive entities encapsulating
control and driven by their internal goal/task (Figure 1, left). When developing a MAS,
sometimes entities require neither autonomy nor proactivity to be correctly characterised.
This is typical of entities that serve as tools to provide specific functionalities. These
entities are the so-called artefacts. Artefacts are passive, reactive entities providing
services and functionalities to be exploited by agents through a usage interface (Figure 1,
right). It is worth noting that artefacts typically realise those behaviours that cannot or do
not require to be characterised as goal-oriented (Omicini et al., 2006; Ricci et al., 2006).
Artefacts mediate agent interactions, support coordination in social activities and embody
the portion of the environment that is designed and controlled to support MAS activities.

Figure 1 A&A metamodel featuring agents as proactive goal-driven entities, and artefacts as
encapsulating services to be exploited by agents through a usage interface

Artefact

2.3 An architectural pattern for self-organising environments

The components of modern computational systems often need to interact with an
environment populated by legacy systems. Hence, the environment can be either
completely or partially given. This is subject to investigation during the analysis
phase (Molesini et al., 2008). In the MAS context, during the design phase, resources
are assigned to artefacts, providing a uniform way for agents to exploit resources.
Unfortunately, in a scenario involving legacy systems, we may not have complete control
over the environment, thus making it difficult to embed self-organising mechanisms
within artefacts. Then, to inject self-* properties in MAS, we need to add a layer on top
of existing environmental resources.

To this purpose, we rely on the notion of environmental agent: such agents are
responsible for managing artefacts to achieve the target self-* property. Hence
environmental agents are seen as distinct from standard agents (also called user

 176 L. Gardelli et al.

agents), which exploit artefact services to achieve individual and social goals. This
recurrent solution has been encoded in the form of an architectural pattern (Gardelli et al.,
2007b) with reference to the A&A metamodel. As shown in Figure 2, environmental
agents act upon artefacts through a management interface. This interface may be
public, i.e., accessible to all agents or, most likely, restricted and allowing access
to operations typically granted to system administrators. A similar approach to achieve
self-organisation, involving managers and managed entities, has been adopted in the
Autonomic Computing community (Kephart and Chess, 2003).

Figure 2 An architectural pattern for self-organising MAS featuring environmental agents
responsible for sustaining feedback loop

Artefact

Using this pattern produces several advantages. When working with legacy
environmental resources – e.g., provided by an existing infrastructure – relying on
additional environmental agents is the only viable solution to add new properties and
behaviour, owing to a limited control on environmental resources. When developing
systems from scratch, the use of this pattern allows different mechanisms to be isolated,
thus achieving a finer control on the overall system. Furthermore, we are able to
identify and suppress conflicting dynamics that may arise when exploiting different
self-organising mechanisms at the same time (Gardelli et al., 2007b). It is worth noting
that environmental agents differ from user agents because they play a special role in the
system, bound within the environment as perceived by user agents. This is not in
contradiction with previous works such as Omicini et al. (2006) and Ricci et al. (2006),
but rather one step beyond; in fact, here user agents perceive the environment exactly
in the same way, that is, populated only by artefacts, whereas environmental agents
cannot interact with user agents, since they are somehow ‘encapsulated’ within the
MAS environment.

 Designing self-organising environments with agents and artefacts 177

This pattern can be successfully applied to embed self-organising mechanisms
in MAS environments, especially to environmental services that do not natively support
all the self-organisation features required. As an example we consider an environment
populated by tuple spaces, provided by an existing coordination infrastructure as in
Omicini and Zambonelli (1999), Mamei and Zambonelli (2005) and Weyns et al. (2005).
In this context, agents are allowed to interact with a tuple space by using standard
operations rd, in and out to read, remove and insert tuples. It could be interesting
to enhance this environment with a background service for automatic tuple moving/
changing mechanisms. This could be used to cluster similar tuples in the same space,
diffuse tuples in the neighbourhood, or make them fade with a certain timing, and so on.
Hence, according to the pattern, this problem can be tackled by designing environmental
agents with the goal of performing the service in an effective and useful way, and
transparently, to user agents. Studying a similar case is in fact the goal of Section 4.

3 Enhancing self-organising system design via simulation

3.1 Background and motivations

Currently, the development of agent-oriented systems is supported by several software
engineering methodologies. Most methodologies were initially conceived to cover
specific issues, and then evolved to encompass the whole software process. For instance,
the Gaia methodology (Zambonelli et al., 2003) was mostly concerned with intra-agent
problems, while the initial target of the SODA methodology (Molesini et al., 2006) was
to tackle the social, interagent dimension. On the other hand, other methodologies
restricted the domain of applicability to a specific class of MAS, such as ADELFE for the
Adaptive MAS theory (Bernon et al., 2003).

Concerns like embedding self-organising mechanisms within an existing MAS,
or engineering an SOSs from scratch, raise peculiar issues that are not typical or so
crucial in current AOSE methodologies. For example, as stated in Section 2.2, while
the environment plays a key role in self-organisation, just a few of the current
AOSE methodologies provide explicit support for it (Molesini et al., 2008). Furthermore,
AOSE methodologies, as well as object-oriented ones, tend to focus on design-time
aspects rather than run-time ones; in fact, it is common practice to assume that once a
system has been designed, its structure will not change and will behave according to the
specifications. The Autonomic Computing proposal suggests considering run-time issues
at design-time; then, aspects such as maintenance become a functional requirement of the
problem to be solved (Kephart and Chess, 2003), thus increasing the degree of autonomy
and adaptiveness of the target system. Along this line, we promote the use of techniques
that allow us to preview and analyse global system dynamics at design-time;
indeed, when dealing with SOS, more attention should be devoted to observing the
emergence of desired properties early in the design stage rather than waiting for the final
implementation. In particular, when developing SOSs, we have to answer the following
question: how can we design the individual environmental agent’s behaviour in order to
ensure the emergence of the desired properties? To tackle this issue, two approaches are
typically exploited:

 178 L. Gardelli et al.

1 devising an ad hoc strategy by decomposition that will solve the specific problem

2 observing a system that achieves similar results, and trying to reverse-engineer
its strategy.

It is generally acknowledged that the former approach is applicable only to a limited
set of simple scenarios; owing to the nonlinearity in entity behaviours, global system
dynamics become quite difficult to be predicted. Instead, in the self-organisation
community, the latter approach is commonly regarded as more fruitful; in nature, it is
possible to recognise patterns that are effectively applicable to artificial systems
(Babaoglu et al., 2006; De Wolf and Holvoet, 2007; Gardelli et al., 2007b; Bonabeau
et al., 1999). Since it is quite unlikely to find a pattern that completely fits a given
problem, it is common practice to rely on some modified and adjusted version. In the
next section we will elaborate on the implications of these modifications.

Once a suitable strategy has been identified and adapted, how can we guarantee that
it will behave as expected? Given the specifications of a SOSs, how to ensure the
emergence of the desired global dynamics is still an open issue. While automatic
verification of properties is typically a viable approach with deterministic models,
verification becomes more difficult and soon intractable when moving to stochastic
models. It is then useful to resort to a different approach, possibly mixing formal
tools and empirical evaluations, so as to support the analysis of the behaviour and
qualities of a design.

Before describing our approach in the next section, we would like to point out that
it is not our goal to develop a brand-new complete methodology for MAS engineering.
Instead, we would rather aim at integrating our approach within existing AOSE
methodologies, and addressing the peculiar issues raised by self-organising MASs. For
instance, by considering Gaia (Zambonelli et al., 2003), our approach could be seen as a
way to direct early design phases: on the one hand, this could help the developer in
defining responsibilities for agents and services of the environment by taking inspiration
from patterns found in natural systems; on the other hand, it could make it possible to
preview the global dynamics of the MAS and tune its behaviour before committing to a
specific design solution.

3.2 Designing environmental agents and their interactions

As discussed in Section 2, in our approach environmental agents are used to embed
self-organising mechanisms into a MAS environment. We assume that requirements have
been collected and the analysis has been performed, in particular identifying the services
to be performed by environmental agents; then our approach can be situated between the
analysis and design phases, actually realising an early-design phase. In order to design
environmental agents, we have first to provide a model for agents and environmental
resources. We can then evaluate several strategies inspired by SOSs with the goal of
discovering the one that could provide the quality attributes required for the application
at hand. The model is analysed by simulation, then a precise environmental agents’
behaviour and a set of working parameters are devised via a tuning process. In particular,
we articulate this approach in three phases, possibly to be executed in a cyclic way:
Modelling, to develop an abstract formal specification of the system; Simulation, to

 Designing self-organising environments with agents and artefacts 179

use such a specification to qualitatively and quantitatively investigate the dynamics of
the system; and Tuning, to change model parameters and behaviour so as to adjust
system dynamics.

3.2.1 Modelling

In the modelling phase we develop an abstract model of the system, providing a
characterisation for:

• user agents

• artefacts

• environmental agents.

As far as artefacts are concerned, we can provide an accurate model of their behaviour
with respect to the usage interface and set of services exposed – though it is often
the case that a detailed description of the inner working is not available. Conversely,
the repertoire of user agents’ behaviour may be too vast to be accurately modelled.
Indeed, in open environments, it is basically impossible to entirely foresee the future
dynamics of agents – self-organisation is used precisely to adapt to unpredicted
situations. Then, it is necessary to abstract from their peculiarity, resorting to
probabilistic or stochastic models of user agents’ behaviour. Models for these agents are
developed in terms of usage of resources, i.e., with respect to the observable behaviour
and by abstracting away from inner processes such as planning and reasoning. The
accuracy of the user-agent internal model is not so crucial, since self-organisation is built
on top of indirect interactions mediated by the environment. Hence, it is sufficient to
know how user agents perceive and modify their environment.

Once a suitable model for user agents and artefacts is provided, we move to the core
part of modelling, that is, the characterisation of environmental agents. A suitable model
for environmental agents is typically built on top of the services provided by artefacts,
and functionally coupled with user agents’ behaviour in order to establish and sustain a
feedback loop. A feedback loop is necessary in every SOS. For example, in ant colonies,
ants deposit pheromones which diffuse and evaporate in the environment; then, by the
perception of the pheromone gradient, ants can coordinate their movements.

To find a candidate model for environmental agents, we can take inspiration from
known SOSs and look for a model exhibiting or approximating the target dynamics. This
step implies the existence of some sort of design-pattern catalogue, a required tool for an
engineer of SOSs. Although this sort of catalogue does not exist yet, several efforts by
different research groups are moving along this direction: several patterns with important
applications in artificial systems have already been identified and characterised
(Bonabeau et al., 1999; Babaoglu et al., 2006; De Wolf and Holvoet, 2007; Gardelli
et al., 2007b). Hence, even though patterns that perfectly match the target system
dynamics can hardly be found, it is still feasible to identify some patterns approximating
such dynamics; however, this typically requires changes of some sort. Given the chaotic
behaviour that sometimes characterises SOSs, modifications should be done with care
since they require expertise in mechanisms underlying SOSs. Moreover, modifications
would also require a simulation-based approach as discussed in Section 3.2.2.

 180 L. Gardelli et al.

Although the model may be provided in several ways, we favour the use of
formal languages; in fact, formal languages allow not only for further automatic analysis,
but also for ambiguity avoidance and precise selection of model features. For instance,
given a specification and a suitable set of parameters, it is possible to analyse the
system dynamics by means of simulation and formally verifying system properties. To
this purpose, tools like PRISM-Probabilistic Symbolic Model Checker (Hinton et al.,
2006) or SPiM-Stochastic Pi Machine (Phillips and Cardelli, 2004) provide a satisfactory
support; though such modelling languages are not explicitly tailored to MASs, they
usually provide abstractions – such as processes or modules – that can somehow be
assimilated to an agent.

3.2.2 Simulation

Given a formal specification of the system to investigate, before performing simulations
to investigate system dynamics it is necessary to provide a suitable set of parameters for
the model. The type of parameter depends on the kind of simulation we are interested in.
However, since when dealing with self-organising MASs we mostly rely on stochastic
simulation (capturing timing and probability aspects), such parameters are typically
expressed in terms of rates of action, defined according to suitable statistical distributions
– typically, an exponential distribution is used owing to the memoryless property (i.e., to
generate new events it is not necessary to know the whole event history, but only the
current state), as in Continuous-Time Markov Chains (Kulkarni, 1995).

Hence, the main concern in the simulation phase is to devise proper system
behaviours and valid ranges for the system parameters (action rates): we do not rely on
any specific guideline for devising those parameters even though we recognise they
should reflect the conditions in the deployment scenario, otherwise the simulations results
would be meaningless. While parameters for artefacts can be accurately measured, user
agents provide a major challenge since we cannot foresee all their possible behaviours.
Hence, we have to make assumptions about artefact behaviours both from the qualitative
(e.g., rational exploitation of resources) and quantitative (e.g., rate of actions and rate of
arrivals/departures) standpoints.

Once the parameters for artefacts and agents are available, we devise an initial set of
parameters for environmental agents and perform standard statistical analysis upon
simulation results. Then the parameters of environmental agents need to be tuned
until the desired global dynamics are observed. At this stage, it is common to test the
global system behaviour in different environmental conditions that are representative of
expected or actual scenarios.

3.2.3 Tuning

In the tuning phase, environmental agents’ behaviour and working parameters are
successively tuned until the desired dynamics are observed. It is worth noting that
setting parameters to arbitrary values may lead to unrealistic scenarios. Furthermore, the
working rate of environmental agents may affect the actual working rate of artefacts:
in a realistic scenario, computational resources are typically limited; hence, increasing
the working rate of environmental agents may require a decrease in the service rate of
artefacts. Without considering this problem, the dynamics of the deployed system may
significantly deviate from the expected ones.

 Designing self-organising environments with agents and artefacts 181

Once the desired dynamics have been previewed, the set of parameters works as a
coarse characterisation for an actual implementation. At the end of the tuning process, we
may realise that the devised set of parameters does not satisfy performance expectations,
features unrealistic values with respect to the execution environment, or deviates the
system from the desired behaviour. In any of these scenarios, we cannot proceed to
the actual design phase since the system is not likely to behave properly when deployed.
Hence, backtracking the modelling choices and evaluating other modifications or
approaches is required. Conversely, when a model meets the target dynamics, and the
parameters lie within the allowed ranges, we can proceed by providing a more accurate
statistical characterisation of system behaviours. However, since stochastic simulation
provides a partial view of the possible system dynamics, accurate predictions about the
system behaviour cannot be provided; i.e., the emergence of a given property is observed
with a frequency that approximates the actual probability. Critical systems may hence
require additional in-depth formal analysis.

3.3 Applicability of the approach

As previously stated, our approach is not to be considered as a complete methodology,
but as a set of best practices devised from experience in modelling and prototyping
artificial SOSs. Our goal is to introduce scientific analysis techniques and tools in a
systematic manner to conduct the early design stage of MAS engineering. The practice of
simulating before deploying is more common in fields where system deployment is much
more complicated/expensive, or involves physical devices, e.g., in the case of collective
robotics. Conversely, the use of simulation tools – even if well known – is not common
practice in mainstream software engineering, despite the many advantages especially
in engineering complex systems. A limitation of the approach is the dependence on
the existence of a natural system that displays the desired, or similar, dynamics.
However, to our knowledge no alternative exists, i.e., forward engineering is not
feasible. Furthermore, the investigation of natural systems has already made it possible
to solve several computer science problems (see Bonabeau et al. (1999) for a
comprehensive discussion).

As far as applicability is concerned, we suggest the use of this approach, along with
architectural patterns, for every system featuring complex dynamics or self-organising
mechanisms which can be adequately captured by the A&A metamodel. So, our approach
is applicable to many distributed systems, including those not initially conceived as a
MAS. Furthermore, the approach could be fruitfully applied to physical MASs, as in the
case of collective robotics scenarios.

In the context of software systems, we consider this approach particularly suitable for
the coordination of large-scale distributed systems such as in stigmergy and pervasive
computing. For instance, Linda-like tuple spaces provide a coordination medium that
can be easily mapped to artefacts. There exist various incarnations of Linda in the
shape of coordination middleware for MASs such as TOTA (Mamei and Zambonelli,
2005), TuCSoN (Omicini and Zambonelli, 1999) and SwarmLinda (Menezes and
Tolksdorf, 2003). Some of them, such as TOTA and SwarmLinda, already embed some
mechanisms to support self-organisation. Within an environment populated by tuple
spaces, interaction between agents and artefacts is reified by tuples. Hence, the role
of environmental agents is to perturb the environment by properly moving tuples or
manipulating them. In the first case, the objective is to make the same configuration

 182 L. Gardelli et al.

patterns emerge, e.g., grouping similar tuples as done in the example in the next section.
In the second case, annotations such as timestamps and counters may be linked to tuples,
supporting processes that require a partial history of events, e.g., pheromone evaporation.

4 The case of collective sorting

In this section we analyse the case study known as collective sorting (Viroli et al., 2007a)
in order to exemplify our methodology for the early design of self-organising MAS
environments. We refer to an environment where artefacts have the shape of tuple spaces
and agents are allowed to insert and retrieve tuples on a content-based approach. This is a
typical scenario of agent-mediated interaction, general enough to support a wide range of
applications, from complex workflow engines (Ricci et al., 2002) to stigmergic MASs
(Weyns et al., 2005; 2007; Sauter et al., 2005).

A typical problem of environments based on tuple spaces is that it is generally
difficult to retrieve the tuples of interest when these can be inserted in any tuple space of
the net. A possible solution is to allow agents to find tuples on a similarity basis, e.g., by
grouping similar tuples in the same tuple space and separating different tuples. As a
consequence, if a tuple is found in a tuple space, similar ones are likely to be found later
in the same space. Furthermore, an ordered environment allows for a better batch
processing of ‘items’, e.g., for applying aggregation techniques, checking consistency,
and so on.

Collective sorting amounts to providing an environment that offers a ‘background’
sorting service. Given a set of N tuple spaces and a statically defined clustering of tuples
into N kinds, collective sorting is about moving tuples towards the fully sorted situation
where each space hosts only tuples of the same kind. Accordingly, sorting should proceed
in dynamic and unpredictable ways, in which user agents keep interacting with tuple
spaces, that is, moving, inserting and dropping tuples. Therefore, the tuple space that
will eventually aggregate a certain kind is not to be decided a priori; rather it should
be implicitly and probabilistically selected as tuples start aggregating in one space
rather than another owing to the effect of multiple tuple movements – namely, in a
self-organising style. This approach is meant to tackle robustness, which is regarded
here as more important than performance: we need sorting to be a property that
eventually emerges in spite of external interactions. Of course, the more user agents keep
altering tuple configurations, the more resources should be devoted to sorting in order to
achieve convergence.

In conformity to the architecture described in Section 2, the sorting task is hence
assigned to a set of environmental agents, whose goal is to keep the environment ordered
as much as possible. In this section we apply the proposed approach to provide a sound
model of the behaviour of such agents. Taking inspiration from a similar problem
– brood sorting in ant colonies – in Step 1 we identify a possible model for the behaviour
of environmental agents. In Step 2 we discuss the outcomes of several simulations of
system behaviour, showing that the solution is not completely adequate, for it does
not always lead to full sorting. In Step 3 we then tune the system model by introducing a
mechanism resembling simulated annealing. Further simulations show the adequacy of
the new model, and emphasise the behaviour of sorting during user-agent interactions.

 Designing self-organising environments with agents and artefacts 183

4.1 Identifying a suitable approach in nature

Collective sorting in distributed tuple spaces is reminiscent of a classical problem in
robotics known as segregation, in which robots roam the ground with the goal of finding,
grouping and separating items.

Solutions to this problem are typically searched for in nature, which is a rich source
of simple but robust strategies. Segregation has already been manifested by social insects
in brood sorting (Bonabeau et al., 1999). When organising the surrounding physical
environment, ants need to group and to keep broods and larvae separate from each other.
Although ant behaviour is still not fully understood, there are several models able to
mimic the dynamics of the system. Ants wander randomly and feature a behaviour
modelled by two probabilities: the probability to pick up (Pp) and drop (Pd) an item. The
idea is that an ant:

• picks up an item if its concentration is lower than the one measured in
previous experience

• starts wandering randomly

• drops the item in a place featuring a concentration higher than where the item was
picked up.

The ant-based solution to brood sorting is intrinsically self-organising; in fact, ants
are guided by spatially local observations and motivated only by the need for picking
items up where concentration is low, and dropping them where concentration is high.
Such numerous interactions make full sorting (i.e., the segregation pattern) emerge at the
global level. Sorting performance is suboptimal – i.e., noncomparable with solutions
based on global observations – but intrinsically robust; indeed, it is able to promptly react
to changes in the environment (e.g., new brood, larvae, or ants are dynamically added or
removed), faults like an environment split (e.g., a barrier splitting the ground in two
parts) and local malfunctions (e.g., ants behaving in a completely different way). As a
consequence, it is interesting to seek a solution to collective sorting by taking inspiration
from the ant-based solution to brood sorting.

However, as already discussed, the above solution needs to be significantly adapted
since the application scenarios of brood sorting and collective sorting feature key
differences. First of all, our scenario is not a continuous environment, featuring instead a
set of N tuple spaces, each of them being a concentrated, conceptually unlimited bag of
tuples. Secondly, our environmental agents are not likely to move and carry tuples.
Rather, for obvious performance reasons, these agents should reside in one of the N sites
and send tuples away when needed. Finally, instead of perceiving items on a locality
basis, environmental agents should be able to look for tuples in either a local or a remote
tuple space – with the latter operation obviously being more expensive.

4.2 Step 1: Modelling collective sorting

We consider N environmental agents, also called sorting agents, each situated in a
different site hosting one of the N tuple spaces. Each agent is hence assigned to one tuple
space, which can be regarded as a tuple space local to the agent. Interactions with this
tuple space are less expensive than interactions with other tuple spaces. Similarly to
ants, an agent can perform only partial observations on the system, i.e., observations on

 184 L. Gardelli et al.

the local tuple space (where the item may be picked up) and observations on a remote
tuple space chosen randomly (where the item may be dropped). According to such
observations, if it can be inferred that a tuple should be removed from the local tuple
space, the agent will locally remove the tuple and move it to a remote tuple space. This
observation-action cycle is executed by adopting a fixed sorting-agent rate r, and a global
sorting-agent rate which is equal to N * r – basically the number of moving attempts per
time unit. This scenario is depicted in Figure 3.

Figure 3 Basic architecture for collective sorting

Therefore, each agent features the goal of moving tuples away from its local
tuple space whenever they do not form a collection. The protocol of each agent can be
described as follows:

• A remote tuple space R is drawn randomly.

• A ‘uniform rd’ operation is performed on the local tuple space (L), yielding a tuple
of kind KL.

• A ‘uniform rd’ operation is performed on R, yielding a tuple of kind KR.

• If KL ≠ KR, a tuple of kind KR is moved from L (if any exists there) to R.

The uniform rd operation, also called urd, is an operation by which an agent can read
any tuple from a tuple space, i.e., every tuple features the same probability of being
retrieved. If an execution of urd on a tuple space yields a tuple of kind K, that tuple
space likely has a high concentration of tuples of kind K. Consequently, K is supposed to
be a good aggregator for the tuple space. After executing the third task, the agent knows
that space L is an aggregator for KL tuples and R an aggregator for KR tuples.

 Designing self-organising environments with agents and artefacts 185

Accordingly, the rationale behind the fourth task is that if KR and KL are different, the
agent can fruitfully send a tuple of kind KR from L to R, so that both KR in R and KL in L
become stronger aggregators.

This first solution can be turned into any stochastic specification language (Hinton
et al., 2006; Phillips and Cardelli, 2004). We relied on the stochastic simulation library
for the MAUDE term-rewriting language discussed in Casadei et al. (2007), though any
other language could be used.

4.3 Step 2: Simulating collective sorting

The observations and the decisions taken by the agent are affected by probability, so the
correctness of this distributed algorithm needs to be checked by simulation, in order to
verify whether it is possible to achieve complete ordering from any initial situation, even
the most chaotic one. As an example, consider an initial chaotic configuration where
every tuple space features the same concentration of tuples for each kind. Supposing
N = 4, the corresponding system state can be represented by the syntax:

T1[25,25,25,25],T2[25,25,25,25],T3[25,25,25,25],T4[25,25,25,25]

expressing the state where each tuple space Ti features 25 tuples per kind (the different
kinds labelled K1, K2, K3 and K4). An example of a simulation trace is pictorially
represented in Figure 4(a), which reports the dynamics of the ‘winning’ tuple in each
tuple space, namely, the tuple that eventually aggregates there. Note that tuples reach
their full aggregation level at different instants, and mostly in unpredictable ways. As a
further example, the chart in Figure 4(b) shows the temporal evolution of tuple space T1:
notice that only tuples of kind K1 aggregate there even though the initial concentration
was the same for all kinds. For instance, around step 1000 it is easy to recognise a
bifurcation promoting aggregation of tuples of kind K1 instead of K2.

It is also interesting to analyse the trend of the entropy for each tuple space as a way
to estimate the degree of order in the system through a single value: since the simulated
strategy tries to increase the inner order of the system, we expect the entropy to decrease
to zero as shown in Figure 4(c). The entropy associated with a tuple space is computed
in the standard way (Casadei et al., 2007), by considering the concentration for each
single tuple kind and normalising the total entropy in a range between 0 and 1. Each
chart reports the number of protocol instances (moving attempts) executed by agents.
Supposing a single-agent rate of 0.25, the global agent rate is 1.0, with an average of one
simulation step per time unit – meaning that full sorting is reached after 3000 time units.
Other simulations performed with a different number of tuples and tuple spaces show
similar qualitative results.

In general, the outcome of a simulation should highlight the system performance, but
it can sometimes show flaws in the design. In our case, though it first appeared that the
proposed model always leads to complete sorting from any initial configuration of tuples,
more thorough simulations showed that there are certain stable states attracting the
system trajectory and having positive entropy, that is, characterised by a noncomplete
degree of sorting. A state of this kind is called local minimum (for entropy). An example
of such a minimum is the following state, obtained by the traces shown in Figure 5(a) and
Figure 5(b):

T1[100,0,0,0],T2[0,69,0,0],T3[0,31,0,0]),T4[0,0,100,100]

 186 L. Gardelli et al.

Figure 4 Charts of a simulation trace: (a) winning tuple; (b) tuple space T1; (c) entropy in each
tuple space

 Designing self-organising environments with agents and artefacts 187

Figure 5 Charts of a simulation trace to a local minimum: (a) tuple kind K2 aggregating in spaces
T2 and T3; (b) both kinds K3 and K4 aggregating in space T4

Tuple kind K2 is the only one aggregating in both spaces T2 and T3; at the same time,
kinds K3 and K4 both aggregate in space T4. It is easy to recognise that once this local
minimum state is reached, agents will not move tuples any longer since it is not possible
to find a space where a tuple aggregates less than elsewhere. Such a state can then be
considered an attractor; in fact, simulations starting from states sufficiently near to them
appear to converge back to this local minimum. This makes the described strategy
inadequate, so a tuning of the model is required in order to find a complete solution.

 188 L. Gardelli et al.

4.4 Step 3: Tuning collective sorting

The local minimum analysed above cannot be escaped owing to the fact that the
developed strategy does not explicitly avoid the case in which the same tuple kind
aggregates in two different tuple spaces. Indeed, owing to the fourth step in the agent’s
protocol, nothing is done when KL = KR. Hence, the same tuple kind may fully aggregate
on two different tuple spaces, leading to the complete aggregation of the two remaining
tuple kinds in a single tuple space as shown in the above local minimum.

These two issues can be solved by more carefully analysing the brood sorting
problem for social insects. There, an ant takes an item and releases it when a new place
featuring a greater concentration of items is found. The concentration is expressed as
quantity of brood over unit of space. Implicitly the ant is able to compare the amount of
brood to the standard quantity represented by the amount of vacuum.

To implement a mechanism supporting this idea, we add another kind of tuple, called
noise, and initially suppose it to be constant throughout sorting. Now an observation
by a urd can be ‘perturbed’, yielding a noise tuple. As in the previous model, if the
local and remote observations are different, a tuple is moved from the local space to
the remote one. Moreover, if an observation is perturbed by the reading of a noise tuple,
the correctness of moving is now probabilistically altered. However, the probability of
picking a tuple in T3 is expected to be higher than in T2. This should promote tuples of
kind K2 to leave T3 more quickly. As a result, this mechanism is expected to globally
result in complete sorting.

This mechanism resembles the concept of simulated annealing (Kirkpatrick et al.,
1983), where a perturbation is added to an optimisation algorithm in order to avoid
the risk of finding a nonoptimal solution. Such a perturbation is initially high and
continuously fades as the system finds new solutions, until it completely disappears.

In our case, the occurrence of noise tuples models such a perturbation. What then
should the dynamics of noise through time be? A possibility would be to initially set
an equal amount of noise in every tuple space, either leaving it unaltered during a system
life cycle, or decreasing it at a fixed rate. However, this choice would require setting
the amount of noise at design-time, while an optimal value depends on the average
occupation of tuple spaces during system execution (Viroli et al., 2007a). This situation is
not appealing since we want our approach to work independently of the number of tuples
in the system. What we are actually looking for is a fully adaptive noise mechanism,
where an initially very low concentration of noise increases as the system approaches a
local minimum, and decreases if the minimum is escaped. In this way, we could expect
the system performance to be only slightly affected if the system stays sufficiently far
from local minima, and on the other hand, the noise production may become significant
only in unfortunate cases where local minima are approached.

To achieve this result, we will manage noise as follows:

• initially, every tuple space features a concentration of only one noise tuple.

• whenever two tuple spaces seem to aggregate the same tuple kind, noise is increased.

• when some tuple is correctly transferred – without an observation perturbed by noise
– noise is decreased.

 Designing self-organising environments with agents and artefacts 189

Accordingly, we change the environmental agent design by relying on the
following protocol:

1 A remote tuple space R is drawn randomly.

2 A uniform rd operation is performed on L, yielding a tuple of kind KL.

3 A uniform rd operation is performed on R, yielding a tuple of kind KR.

4 If KL ≠ KR ≠ noise, a tuple of kind KR is moved from L to R.

5 If KL ≠ KR = noise, a tuple of kind KL is moved from L to R.

6 If noise ≠ KR = KL, noise is increased by 1 in L.

7 If noise ≠ KL ≠ KR ≠ noise, noise is decreased by 1 in L.

Now, this protocol allows the situation where both KL and KR are noise. The fourth and
fifth tasks say that different observations in L and R should always cause transfer: if KR is
not noise, a KR tuple is moved to R, otherwise a KL tuple is moved to R. The sixth task
increases noise if L and R are aggregating (nonnoise) tuples of the same kind (KR = KL),
and finally the seventh task decreases noise if a nonperturbed transfer is executed.

Considering now the worst case of a symmetric local minimum:

T1[100,100,0,0],T2[0,0,50,0],T3[0,0,50,0],T4[0,0 ,0 ,100],

we expect noise to start increasing both in tuple space T2 and tuple space T3. At some
point, movement of K3 tuples between T2 and T3 occurs since some noise is observed.
Owing to a bifurcation effect, if either space T2 or T3 features a concentration of K3
tuples greater than noise, more K3 tuples are transferred there, making that space
eventually aggregate K3 tuples. Accordingly, the other tuple space is emptied, loses noise
tuples and becomes the target of tuples of kind K1 and/or K2. This is actually what can
be observed from the traces in Figure 6(a) and Figure 6(b), showing how the local
minimum is escaped in spaces T2 and T1. In both cases we can see that, as noise tuples
increase, the system escapes the local minimum configuration, leading to the fading of
noise tuples as a consequence.

More simulations performed on this solution show that:

• using noise slightly affects performance, for systems typically stay away from local
minima and generate little noise

• starting from a local minimum, the system is always able to escape the
local minimum

• full sorting is always reached

• these results are independent of the number N of tuple spaces (and kinds).

 190 L. Gardelli et al.

Figure 6 Charts of a simulation trace escaping from a local minimum: (a) situation in space T2:
winning tuple and noise in evidence; (b) situation in space T1: kind K3 leaves the space

4.5 Evaluation of reactiveness

Having found a promising solution, it is interesting to get back to simulation. In this
section we report the final results, and evaluate interesting system parameters to be used
in subsequent steps of MAS design.

The main purpose of solving the collective sorting problem for tuple spaces using a
self-organising approach is to tackle unpredictable interactions with the environment.

The typical usage scenario includes user agents exploiting the coordination service
provided by tuple spaces, and inserting and removing tuples. The details of this behaviour
cannot be known a priori, so sorting should be able to react to changes in the surrounding
conditions in a fully adaptive way. This section shows how the ratio between user agent
rate and sorting agent rate, called perturbation/sorting ratio, influences the result of
sorting. To this end, we keep the global sorting rate fixed to 1.0 and include a change rate
for user agents in the simulation, that is, the rate by which a user agent randomly moves a
tuple from one space to another. Starting from an initially sorted configuration of tuples
(400 tuples, N = 4) and depending on the change rate, we can easily expect that:

 Designing self-organising environments with agents and artefacts 191

• full sorting is almost always maintained

• a certain level of (partial) sorting can be maintained

• the system becomes more and more unsorted as time passes.

The evolution through such situations is reported in Figure 7, where each chart shows the
evolution of entropy over time for different rates.

Figure 7 Evolution of entropy with different perturbation/sorting ratio

As shown in Figure 8, the key factor is the perturbation/sorting ratio, which gives a clear
indication of the adequacy of sorting resources, in terms of the maximum guaranteed
level of entropy. Along with the identified environmental agent behaviour, the bound of
the perturbation/sorting ratio, set to 0.5, is a critical system parameter that can be
revealed only by simulation and then may be exploited in subsequent design steps (not
discussed here). For instance, a form of load-balancing is required to make sure that the
resources of sorting are adequate and self-adaptable to the current degree of disorder, i.e.,
they increase when needed and then decrease. Techniques related to the prey-predator
approach as studied, for example, by Gardelli et al. (2006; 2007a) could be evaluated in
the subsequent steps of design.

 192 L. Gardelli et al.

Figure 8 Maximum entropy depending on perturbation/sorting ratio

5 Conclusion

In this article we discussed an approach to drive the early-design phase in the engineering
of self-organising MASs. In particular, the approach is based on the A&A metamodel,
which describes a MAS in terms of agents and artefacts. With respect to the metamodel,
we introduced the role of environmental agents in the form of an architectural pattern:
such agents are responsible for those environmental processes/behaviours needed to
close the feedback loop together with other agents. Hence, in our approach, designing a
self-organising MAS consists in properly designing environmental agents.

Since the dynamics of SOSs tend to be complex, we resort to stochastic simulations
in order to design environmental agents. In particular, the approach is articulated in three
steps: modelling, simulation and tuning. The advantages of using simulation in the
software engineering process are typically overlooked; recently, however, simulation has
been gaining consensus in the MAS community for tackling complex-system design
(De Wolf et al., 2006; Bernon et al., 2007; Fortino et al., 2006; Uhrmacher, 2002).

As a case for applying this method, we considered the problem of decentralised
sorting in environments built upon tuple spaces: specifically, the proposed solution
clusters similar tuples in the same space while separating different tuples. The solution to
this problem, called collective sorting, has been initially inspired by the swarm
intelligence problem known as brood sorting (Deneubourg et al., 1991; Bonabeau et al.,
1999). To improve the algorithm convergence, we introduced noise tuples that allow
local minima to be avoided by perturbing the tuple-space state. This approach
conceptually resembles simulated annealing.

Through this case study, we can argue that SOSs can hardly be designed
without resorting to simulation-driven approaches from the early-design phase.
Furthermore, the use of environmental agents is seemingly unavoidable when using
existing infrastructures, such as tuple spaces, and promotes a neat separation between
environmental services and self-organising mechanisms.

 Designing self-organising environments with agents and artefacts 193

We also identified two main future research developments:

1 the integration between the presented approach and existing AOSE methodologies

2 the adoption of formal-analysis techniques and model-checking tools for validating
simulation results, and for characterising target system behaviour in a more
accurate way.

References

Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas, F., Knight, J., et al. (2000)
‘Amorphous computing’, Communications of the ACM, Vol. 43, No. 5, pp.74–82.

Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gambardella, L.M.,
Ganguly, N., et al. (2006) ‘Design patterns from biology for distributed computing’, ACM
Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, pp.26–66.

Babaoglu, O., Meling, H. and Montresor, A. (2002) ‘Anthill: a framework for the development of
agent-based peer-to-peer systems’, 22nd International Conference on Distributed Computing
Systems (ICDCS’02), Vienna, Austria: IEEE Computer Society, pp.15–22.

Bernon, C., Gleizes, M-P., Peyruqueou, S. and Picard, G. (2003) ‘ADELFE: a methodology
for adaptive multi-agent systems engineering’, in P. Petta, R. Tolksdorf and F. Zambonelli
(Eds.) Engineering Societies in the Agents World III, Vol. 2577 of LNCS (LNAI), Springer,
pp.156–169, 3rd International Workshop (ESAW, 2002), Madrid, Spain, 16–17 September
2002, Revised papers.

Bernon, C., Gleizes, M-P. and Picard, G. (2007) ‘Enhancing self-organising emergent systems
design with simulation’, in G.M. O’Hare, M.J. O’Grady, A. Ricci and O. Dikenelli (Eds.)
Engineering Societies in the Agents World VII, Vol. 4457 of LNCS (LNAI), Springer, pp.284–
299, 7th International Workshop (ESAW, 2006), Dublin, Ireland, 6–8 September 2006,
Revised selected and invited papers.

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999) ‘Swarm intelligence: from natural to artificial
systems’, Santa Fe Institute Studies in the Sciences of Complexity, New York, NY: Oxford
University Press.

Camazine, S., Deneubourg, J-L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E. (2001)
‘Self-organization in biological systems’, Princeton Studies in Complexity, Princeton, NJ:
Princeton University Press.

Casadei, M., Gardelli, L. and Viroli, M. (2007) ‘Simulating emergent properties of coordination in
Maude: the collective sort case’, Electronic Notes in Theoretical Computer Science, Vol. 175,
No. 2, pp.59–80, 5th International Workshop on the Foundations of Coordination Languages
and Software Architectures (FOCLASA 2006).

Cicirello, V. and Smith, S. (2004) ‘Wasp-like agents for distributed factory coordination’,
Autonomous Agents and Multi-agent Systems, Vol. 8, No. 3, pp.237–266.

De Wolf, T. and Holvoet, T. (2007) ‘Design patterns for decentralised coordination in
self-organising emergent systems’, Engineering Self-organising Systems, Vol. 4335 of LNCS
(LNAI), Springer, pp.28–49, 4th International Workshop on Engineering Self-organising
Applications (ESOA’06), Hakodate, Japan, 9 May 2006.

De Wolf, T., Holvoet, T. and Samaey, G. (2006) ‘Development of self-organising emergent
applications with simulation-based numerical analysis’, in S.A. Brueckner, G. Di Marzo
Serugendo, D. Hales and F. Zambonelli (Eds.) Engineering Self-organising Systems,
Vol. 3910 of LNCS (LNAI), Springer, pp.138–152, 3rd International Workshop (ESOA 2005),
Utrecht, the Netherlands, July 2005, Revised selected papers.

 194 L. Gardelli et al.

Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C. and Chrétien, L. (1991)
‘The dynamics of collective sorting: robot-like ants and ant-like robots’, in J-A. Meyer and
S.W. Wilson (Eds.) From Animals to Animals: Proceedings of the First International
Conference on Simulation of Adaptive Behavior, Classics, Cambridge, MA: MIT Press,
pp.356–363.

Fortino, G., Garro, A., Russo, W., Caico, R., Cossentino, M. and Termine, F. (2006)
‘Simulation-driven development of multi-agent systems’, in A. Genco, A. Gentile and
S. Sorce (Eds.) Industrial Simulation Conference 2006 (ISC 2006), The European Simulation
Society (EUROSIS) and The European Technology Institute (ETI), Palermo, Italy, pp.17–24.

Gardelli, L., Viroli, M., Casadei, M. and Omicini, A. (2007a) ‘Designing self-organising MAS
environments: the collective sort case’, in D. Weyns, H.V.D. Parunak and F. Michel (Eds.)
Environments for Multi-agent Systems III, Vol. 4389 of LNCS (LNAI), Springer, pp.254–271,
3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006, Selected revised
and invited papers.

Gardelli, L., Viroli, M. and Omicini, A. (2007b) ‘Design patterns for self-organising systems’, in
H-D. Burkhard, R. Verbrugge and L.Z. Varga (Eds.) Multi-agent Systems and Applications V,
Vol. 4696 of LNCS (LNAI), Springer, pp.123–132, Proceedings, 5th International Central and
Eastern European Conference on Multi-agent Systems (CEEMAS’07), Leipzig, Germany,
25–27 September.

Gardelli, L., Viroli, M. and Omicini, A. (2006) ‘On the role of simulations in engineering
self-organising MAS: the case of an intrusion detection system in TuCSoN’, in
S.A. Brueckner, G. Di Marzo Serugendo, D. Hales and F. Zambonelli (Eds.) Engineering
Self-organising Systems, Vol. 3910 of LNCS (LNAI), Springer, pp.153–168, 3rd International
Workshop (ESOA 2005), Utrecht, the Netherlands, 26 July 2005, Revised selected papers.

Grassé, P-P. (1959) ‘La reconstruction du nid et les coordinations interindividuelles chez
bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai d’interpretation
du comportement des termites constructeurs’, Insectes Sociaux, Vol. 6, No. 1, pp.41–80.

Hinton, A., Kwiatkowska, M., Norman, G. and Parker, D. (2006) ‘PRISM: a tool for automatic
verification of probabilistic systems’, in H. Hermanns and J. Palsberg (Eds.) Tools and
Algorithms for the Construction and Analysis of Systems, Vol. 3920 of LNCS, Springer,
pp.441–444, Proceedings, 12th International Conference (TACAS 2006), held as part of the
Joint European Conferences on Theory and Practice of Software (ETAPS 2006), Vienna,
Austria, 25 March–2 April.

Kephart, J.O. and Chess, D.M. (2003) ‘The vision of autonomic computing’, Computer, Vol. 36,
No. 1, pp.41–50.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) ‘Optimization by simulated annealing’,
Science, Vol. 220, No. 4598, pp.671–680.

Kulkarni, V.G. (1995) Modeling and Analysis of Stochastic Systems, London, UK: Chapman &
Hall, Ltd.

Mamei, M. and Zambonelli, F. (2005) ‘Programming stigmergic coordination with the TOTA
middleware’, 4th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’05), New York, NY: ACM Press, pp.415–422.

Menezes, R. and Tolksdorf, R. (2003) ‘A new approach to scalable Linda-systems based on
swarms’, ACM Symposium on Applied Computing (SAC’03), New York, NY: ACM Press,
pp.375–379.

Molesini, A., Omicini, A., Denti, E. and Ricci, A. (2006) ‘SODA: a roadmap to artefacts’, in
O. Dikenelli, M-P. Gleizes and A. Ricci (Eds.) Engineering Societies in the Agents World VI,
Vol. 3963 of LNCS (LNAI), Springer, pp.49–62, 6th International Workshop (ESAW 2005),
Kusadasi, Aydın, Turkey, 26–28 October 2005, Revised, selected and invited papers.

Molesini, A., Omicini, A. and Viroli, M. (2008) ‘Environment in agent-oriented software
engineering methodologies’, Special Issue on ‘Engineering environments for multiagent
systems’, International Journal on Multiagent and Grid Systems, in press.

 Designing self-organising environments with agents and artefacts 195

Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J-L., Nolfi, S.,
Gambardella, L.M. and Dorigo, M. (2004) ‘SWARM-BOT: a new distributed robotic
concept’, Autonomous Robots, Vol. 17, Nos. 2–3, pp.193–221.

Omicini, A., Ricci, A. and Viroli, M. (2006) ‘Agens Faber: toward a theory of artefacts for
MAS’, Electronic Notes in Theoretical Computer Sciences, Vol. 150, No. 3, pp.21–36,
Proceedings, 1st International Workshop ‘Coordination and Organization’ (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005.

Omicini, A. and Zambonelli, F. (1999) ‘Coordination for internet application development’, Special
Issue ‘Coordination mechanisms for web agents’, Autonomous Agents and Multi-agent
Systems, Vol. 2, No. 3, pp.251–269.

Phillips, A. and Cardelli, L. (2004) ‘A correct abstract machine for the stochastic Pi-calculus’, in
A. Ingolfsdottir and H.R. Nielson (Eds.) Workshop on Concurrent Models in Molecular
Biology (BioConcur 2004), CONCUR 2004, London, UK.

Ricci, A., Omicini, A. and Denti, E. (2002) ‘Virtual enterprises and workflow management as
agent coordination issues’, Special Issue ‘Cooperative information agents – best papers of
CIA 2001’, International Journal of Cooperative Information Systems, Vol. 11, Nos. 3–4,
pp.355–379.

Ricci, A., Viroli, M. and Omicini, A. (2006) ‘Programming MAS with artifacts’, in R.P. Bordini,
M. Dastani, J. Dix and A. El Fallah Seghrouchni (Eds.) Programming Multi-agent Systems,
Vol. 3862 of LNCS (LNAI), Springer, pp.206–221, 3rd International Workshop (PROMAS
2005), AAMAS 2005, Utrecht, the Netherlands, 26 July 2005, Revised and invited papers.

Sauter, J.A., Matthews, R.S., Parunak, H.V.D. and Brueckner, S. (2005) Performance of Digital
Pheromones for Swarming Vehicle Control, in F. Dignum, V. Dignum, S. Koenig, S. Kraus,
M.P. Singh and M. Woolridge (Eds.) Proceedings of the 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht, the Netherlands: ACM
Press, pp.903–910.

Solé, R.V. and Bascompte, J. (2006) ‘Self-organization in complex ecosystems’, Monographs in
Population Biology, Princeton, NJ: Princeton University Press, Vol. 42.

Steward, S. and Appleby, S. (1994) ‘Mobile software agents for control of distributed systems
based on principles of social insect behaviour’, International Conference on Communications
Systems (ICCS’94), Singapore: IEEE, Vol. 2, pp.549–553.

Uhrmacher, A.M. (2002) ‘Simulation for agent-oriented software engineering’, in W. Lunceford
and E. Page (Eds.) 1st International Conference on Grand Challenges for Modeling and
Simulation, SCS, San Diego, San Antonio, Texas.

Viroli, M., Casadei, M. and Gardelli, L. (2007a) ‘A self-organising solution to the collective
sort problem in distributed tuple spaces’, 2007 ACM Symposium on Applied Computing
(SAC 2007), Special Track on Coordination Models and Languages, ACM, Seoul, Korea,
pp.354–359.

Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K. and Zambonelli, F. (2007b) ‘Infrastructures for
the environment of multiagent systems’, Special Issue on ‘Environments for multi-agent
systems’, Autonomous Agents and Multi-agent Systems, Vol. 14, No. 1, pp.49–60.

Weyns, D., Omicini, A. and Odell, J. (2007) ‘Environment as a first-class abstraction in multi-agent
systems’, Special Issue on ‘Environments for multi-agent systems’, Autonomous Agents and
Multi-agent Systems, Vol. 14, No. 1, pp.5–30.

Weyns, D., Schelfthout, K., Holvoet, T. and Lefever, T. (2005) ‘Decentralized control of E’GV
transportation systems’, in F. Dignum, V. Dignum, S. Koenig, S. Kraus, M.P. Singh and
M. Woolridge (Eds.) Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2005), Utrecht, the Netherlands: ACM Press,
pp.67–74.

Zambonelli, F., Jennings, N.R. and Wooldridge, M.J. (2003) ‘Developing multiagent systems: the
Gaia methodology’, ACM Transactions on Software Engineering and Methodology (TOSEM),
Vol. 12, No. 3, pp.317–370.

