
Design Patterns for Self-organising Systems

Luca Gardelli, Mirko Viroli, and Andrea Omicini

Alma Mater Studiorum–Università di Bologna
Via Venezia 52 - 47023 Cesena, Italy

{luca.gardelli,mirko.viroli,andrea.omicini}@unibo.it

Abstract. Natural systems are regarded as rich sources of inspiration
for engineering artificial systems, particularly when adopting the multia-
gent system (MAS) paradigm. To promote a systematic reuse of mecha-
nisms featured in self-organising systems, we analyse a selection of design
patterns devised from the self-organisation literature. Starting from our
reference MAS metamodel, we propose a pattern scheme that reflects
the peculiarities of self-organising systems. Then, we provide a complete
characterisation of each pattern, with particular attention to the prob-
lem description, the solution with respect to our metamodel, the natural
systems which have inspired the pattern and known applications.

1 Introduction

Self-organisation is a very compelling approach to the engineering of complex
systems because of the many interesting properties, including adaptivity and
robustness. Although, forward engineering of self-organising systems, i.e. finding
the individual behaviour to meet the desired global dynamics, rapidly becomes
unfeasible as the complexity of the system increases. Hence, it is becoming com-
mon practice to exploit existing models of natural systems, particularly social
insects: these models provide a characterisation of global dynamics with respect
to individual actions and environmental parameters. To ease this process, we
promote the use and development – since few works exist about this topic [1,2]
– of design patterns for self-organising systems to establish a mapping between
artificial systems problems and natural systems solutions. First introduced in
1977 by Alexander in architecture [3], the concept of design pattern later gained
wide consensus in computer science with the object-oriented paradigm [4]. A
design pattern provides a reusable solution to a recurrent problem in a specific
domain: it is worth noting that a pattern does not describe an actual design,
rather it encodes an abstract model of the solution using specific entities of the
paradigm in use. Multiagent system (MAS) researchers synthesised patterns for
the agent paradigm, providing solutions related to resource access, mobility and
basic social skills [5,6,7]. The use of design patterns offers several advantages,
such as, reducing design-time by exploiting off-the-shelf solutions, and promot-
ing collaboration by providing a shared language. Specifically, in the case of
self-organising systems, patterns play a key role in driving the designer choices
among the chaotic behaviours displayed by complex systems.

H.-D. Burkhard et al. (Eds.): CEEMAS 2007, LNAI 4696, pp. 123–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 L. Gardelli, M. Viroli, and A. Omicini

To promote the acceptance of new patterns, as well as to reduce ambiguity, it
is necessary to frame a pattern with respect to a shared scheme, ensuring a good
degree of coherence of the whole pattern catalogue. For example, patterns for the
object-oriented paradigm are described according to the scheme provided in [4]:
although, as pointed out in [8,7], since the agent paradigm cannot be effectively
characterised using only object-oriented abstractions, patterns for MAS should
be described using specific schemata. In particular, a candidate scheme should
reflect the peculiarities of the target MAS metamodel: to this purpose, several
pattern classification and schemata have been proposed [8,9]. However, pattern
schemata for MAS, like the one in [8], do not adequately capture the peculiari-
ties of self-organising systems, namely, which are the forces responsible for the
feedback loop, and which notion of locality/topology is needed. Furthermore, to
our knowledge, no specific pattern scheme has been proposed to deal with the
previous aspects, and the few existing works rely on existing MAS schemata.

The contribution of this article is twofold: we extend current pattern schemata
to better represent self-organising MAS, and characterise some patterns with re-
spect to our MAS metamodel. The remainder of the article is structured as
follows: Section 2 describes our MAS metamodel based on agents and environ-
mental resources, i.e. artifacts. Section 3 describes the reference pattern scheme,
then Section 4 analyses each pattern, namely, Collective Sort, Evaporation, Ag-
gregation and Diffusion. Section 5 concludes by providing final remarks and
listing future research directions.

2 Our Reference MAS Metamodel

When modelling natural systems and developing artificial ones, the MAS para-
digm is the best choice since it provides the suitable abstractions for modelling
and relating the entities. Although being recognised as unique, the MAS para-
digm is captured from different perspectives in different metamodels emphasising
specific features. We adopt the agents & artifacts metamodel (A&A), where a
MAS is modelled in terms of two fundamental abstractions: agents and artifacts
[10]. Agents are autonomous pro-active entities encapsulating control, driven by
their internal goal/task. When developing a MAS, sometimes entities do not re-
quire neither autonomy nor pro-activity to be correctly characterised. Artifacts
are passive, reactive entities providing services and functionalities to be exploited
by agents through a usage interface. It is worth noting that artifacts typically
realise those behaviours that cannot or do not require to be characterised as goal
oriented [10]. Artifacts mediate agents interactions and support coordination in
social activities and embody the portion of the environment that can be designed
and controlled to support MAS activities [11,12].

Based on this metamodel, we recognise a recurrent solution when designing
self-organising MAS: the solution depicted in Figure 1 is an architectural pat-
tern. In a typical self-organisation scenario, agents perturb the environment, and
while the environment evolves to compensate the perturbation, agents percep-
tion is affected, creating a feedback loop able to sustain the self-organisation

Design Patterns for Self-organising Systems 125

Fig. 1. Architectural pattern featuring environmental agents as artifact administrators

process. Hence, on one side we have agents exploiting artifacts services, that we
name user agents from now on. Although, because of the enormous repertoire of
behaviours that can be exhibited by user agents in different scenarios, we can-
not further detail their role in the architecture. On the other side artifacts pro-
vide basic services in terms of simple local elaboration of agents requests. Since
the passive/reactive attitude of artifacts, they cannot autonomously adapt their
behaviour to meet the changing requirements of a dynamic and unpredictable
environment. Hence, we envision MAS environments built upon artifacts and
environmental agents : in particular environmental agents are in charge of those
goal-oriented behaviour needed for the management of the artifacts. Specifically,
we separate the usage interface from the management interface – in an Auto-
nomic Computing style [13] – whose access is restricted only to environmental
agents: furthermore environmental agents may exploit artifacts inspectability
and malleability.

3 A Reference Pattern Scheme

The literature provides several pattern schemata, e.g. [4,9,8]. In a previous work
[14], we analysed patterns for self-organising system relying on the scheme for
MAS described in [8]: although, we recognise the failure to capture essential self-
organisation aspects, namely forces involved in the feedback loop and topology
notion. The pattern scheme we propose extends the one described in [8] and
is summarised in Table 1, where the novel items are emphasised. Particularly
relevant to this work are the feedback loop and locality elements:

Feedback loop. Describes the processes or actions involved in the establish-
ment of a feedback loop, i.e. the actions providing positive and negative feed-
back. For example, in a digital pheromone infrastructure [15], the positive
feedback consists in the agent depositing pheromones, while the environment
provides the negative feedback in the form of pheromone evaporation.

Locality. Requirements in terms of spatial topology or action-perception ranges:
if the environment has a notion of continuous space, perception range is spec-
ified as a float value; if the environment has a graph topology, ranges are spec-
ified as the number of hops.

126 L. Gardelli, M. Viroli, and A. Omicini

Table 1. An extension to the pattern scheme described in [8]

Name The name of the pattern

Aliases Alternative names

Problem The problem solved by the pattern

Forces Trade-offs in system dynamics

Entities Entities participating to the pattern

Dynamics Entities interactions

Feedback Loop Interactions responsible for the feedback loop

Locality Describe the type of locality required

Dependencies Environmental requirements

Example An abstract example of usage

Implementation Hints on implementation

Known Uses Existing applications using the pattern

Consequences Effects on the overall system design

See Also References to other patterns

4 Patterns of Self-organising Systems

4.1 Collective Sort Pattern

Social insects tend to arrange items in their surroundings according to specific
criteria, e.g. broods and larvae sorting in ant colonies [16,17]. This process of
collectively grouping items is commonly observed in human societies as well, and
serves different purposes, e.g. garbage collection. Also in artificial systems collec-
tive sort strategies may play an important role: for instance, grouping together
related information helps to manage batch processing.

We consider our previous exploration of Collective Sort dynamics in a MAS
context [18,19] in order to synthesise a pattern. From an arbitrary initial state,
see Figure 2, the goal of Collective Sort is to group together similar information
in the same node, while separating different kinds of information as shown in
Figure 2b. Although, this is not always possible: indeed, if we consider a network
having two nodes and three kinds of information, two of them are going to
coexist on the same node. Due to random initial situation and asynchronous
interactions the whole system can be modelled as stochastic. Hence, it is not
generally known a priori where a specific cluster will appear: clusters location
is an emergent properties of the system [18], which indeed supports robustness
and unpredictable environmental conditions. Table 2 summarises the features of
the collective sort pattern.

4.2 Evaporation Pattern

In social insects colonies coordination is often achieved by the use of chemical
substances, usually in the form of pheromones: pheromones act as markers for

Design Patterns for Self-organising Systems 127

Table 2. A summary of the features of the collective sort pattern according to the
reference scheme

Name Collective Sort
Aliases Brood Sorting, Collective Clustering
Problem MAS environments that does not explicitly impose constraints on information repos-

itories may suffer from the overhead of information discovery.
Forces Optimal techniques requires more computation while reducing communication costs:

on the other hand, heuristics allows for background computation but increase com-
munication costs.

Entities The pattern involves artifacts, user agents and environmental agents.
Dynamics User agents inject information in the artifacts. The artifacts have to provide spe-

cific content inspection primitives depending on the implementation. Environmental
agents monitor artifacts for new information, and depending on artifacts content
may decide to move an information to a neighboring artifacts.

Feedback Loop Positive feedback is determined by environmental agents moving items to the appro-
priate cluster, while negative feedback happens when an item is misplaced.

Locality Either continuous and discrete topology are suitable. Larger perception range im-
prove strategy efficiency, but perception of immediate neighborhood is sufficient, but
requires memory of items encountered.

Dependencies It requires an environment compliant to the A&A metamodel.
Example See Figure 2 for a visual example.
Implementation Environmental agents may perform periodic inspection or been triggered by an in-

sertion action: either approaches are suitable and choice depend on performance
requirements. Moving information requires an aggregated view upon artifacts con-
tent, e.g. using counters or spatial entropy measures: in the case this is not feasible
or too expensive, content sampling techniques can be used, see [18] for a detailed
discussion.

Known Uses Explorations in robotics for sorting a physical environment [16].
Consequences Collective Sort may not work when used in combination with other patterns that

spread information across the MAS: in particular collective sort opposes to Diffusion
(Section 4.4).

See Also -

specific activities, e.g. food foraging [16,17]. Specifically, these substances are
regulated by environmental processes called aggregation, diffusion in space and
evaporation over time: each process can be captured by a specific pattern, hence,
it is analysed separately. This class of mechanisms for indirect coordination me-
diated by the environment is called stigmergy, and it has been widely applied in
the engineering of artificial systems [20,15,21].

Evaporation is a process observed in everyday life, although with different
implications: e.g. from scent intensity it is possible to deduce amount and dis-
tance of its source. In the case of insect colonies, marker concentration tracks
activities: e.g. absence of pheromone implies no activity or no discovered food
source. In ant food foraging [17] when a food source is exhausted, the pheromone
trail is no longer reinforced and slowly evaporates.

Evaporation has a counterpart in artificial systems that is related to informa-
tion obsolescence [22,23]. Consider a web page listing several news: fresh infor-
mation is inserted at the top of the page and news fade as time passes, which
can be translated in visual terms in a movement towards the end of the page.
In general, evaporation can be considered a mechanism to reduce information
amount, based on a time relevance criterion. As an example, starting from an
initial state – see Figure 3a – evaporation removes old information over time
and, in absence of new information insertion, eventually erases everything—see
Figure 3b.

128 L. Gardelli, M. Viroli, and A. Omicini

Fig. 2. Collective sort (a) an initial
state (b) the final state

Fig. 3. Evaporation (a) an initial state
(b) the final state with no reinforce-
ment

Fig. 4. Aggregation (a) an initial state
(b) the final state

Fig. 5. Diffusion dynamics (a) an ini-
tial state (b) the desired final state

4.3 Aggregation Pattern

Pheromone deposited in the environment is spontaneously aggregated, i.e. sep-
arate quantities of pheromone are perceived as an individual quantity but with
greater intensity [16,17], see Figure 4 for a visual example. Aggregation is a
mechanism of reinforcement and is also observable in human social tasks [22].
The ranking mechanism is a typical example: when browsing the Internet some-
one finds an interesting fact, he/she can leave a (reinforcement) comment that
is typically anonymously and automatically aggregated with comments of other
users. It is then evident that, while evaporation is driven by the environment,
aggregation is driven by the user agent. When used in combination with evap-
oration, aggregation lets the designer close a positive/negative feedback loop,
allowing for auto-regulated system in self-organisation and Autonomic Comput-
ing [13] styles.

4.4 Diffusion Pattern

When pheromone is deposited into the environment it spontaneously tends to
diffuse in neighboring locations [17]. This process, called diffusion, is omnipresent
in nature and hence is studied in several fields under different names, e.g. osmosis
in chemistry. Starting from an arbitrary state, see Figure 5a, diffusion eventually
distribute the information equally across all nodes [1], see Figure 5b.

While aggregation and evaporation processes are often used in combination
and act locally, diffusion can be used alone and requires a notion of topology.
Furthermore, in diffusion the initial quantity of information is conserved but

Design Patterns for Self-organising Systems 129

Table 3. A summary of the features of the evaporation pattern according to the
reference scheme

Name Evaporation
Aliases None to our knowledge.
Problem MAS environments can soon become overwhelmed by information deployed by

agents.
Forces Higher evaporation rates release memory, but require more computation: further-

more, evaporated information cannot be recovered!
Entities The pattern involves artifacts, user agents and environmental agents.
Dynamics User agents inject information in the artifacts. The artifacts assign a time-

stamp/counter to the received information. Environmental agents erase obsolete
information/information whose counter reached zero: eventually, all the informa-
tion is removed.

Feedback Loop User agents deposit items in the environment while environmental agent evaporate
them.

Locality Perceptions and actions happens only locally. Either continuous and discrete topol-
ogy are suitable.

Dependencies It requires an environment compliant to the A&A metamodel.
Example See Figure 3 for a visual example.
Implementation Environmental agents may perform periodic inspection or been triggered by a

specific event: either approaches are suitable and choice depend on performance
requirements.

Known Uses A fundamental element of stigmergy [17] and digital pheromone based application
[20,15,21].

Consequences -
See Also When used in combination with Aggregation (Section 4.3) or Diffusion (Section

4.4), it allows for building complex behaviours: in particular, Evaporation + Ag-
gregation + Diffusion is the Stigmergy pattern.

Table 4. A summary of the features of the aggregation pattern according to the
reference scheme

Name Aggregation
Aliases None to our knowledge.
Problem Large scale MAS suffer from the amount of information deposited by agents, which

have to be sifted in order to synthesise macro information.
Forces Higher aggregation rates provide results closer to the actual environment status,

but require more computation.
Entities The pattern involves artifacts, user agents and environmental agents.
Dynamics User agents inject information in the artifacts. Environmental agents look for new

information and aggregate it with older information to produce a coherent result.
Feedback Loop User agents deposit items in the environment while environmental agent synthesise

an aggregated info.
Locality Perceptions and actions happens only locally. Either continuous and discrete topol-

ogy are suitable.
Dependencies It requires an environment compliant to the A&A metamodel.
Example See Figure 4 for a visual example.
Implementation Environmental agents may perform periodic inspection or been triggered by a

specific event: either approaches are suitable and choice depend on performance
requirements. It is worth noting that aggregation is a very simple task and could
be automatically handled by artifacts, when properly programmed: although, it is
easier to have separate agents for different functionalities, which can be individu-
ally paused or stopped.

Known Uses A fundamental element of stigmergy [17] and digital pheromone based application
[20,15,21]. In e-commerce applications customers feedback is usually aggregated,
e.g. average ranking, in order to guide other customers.

Consequences -
See Also When used in combination with Evaporation (Section 4.2) or Diffusion (Section

4.4), it allows for building complex behaviours: in particular, Evaporation + Ag-
gregation + Diffusion is the Stigmergy pattern.

130 L. Gardelli, M. Viroli, and A. Omicini

Table 5. A summary of the features of the diffusion pattern according to the reference
scheme

Name Diffusion
Aliases Plain Diffusion, Osmosis.
Problem In MAS where agents are only allowed to access local, agents reasoning suffer from

the lack of knowledge about neighboring nodes.
Forces Higher diffusion radius brings information further away from its source, providing a

guidance also to distant agents: although, the infrastructure load increases, both in
terms of computation and memory occupation. Furthermore, diffused information
does not reflect the current status of the environment hence providing false hints.

Entities The pattern involves artifacts, user agents and environmental agents.
Dynamics User agents inject information in the artifacts. A weight is assigned to the in-

formation from artifacts or user agents. Environmental agents diffuse information
decreasing the weights in local node and correspondingly increasing the weights in
neighboring nodes.

Feedback Loop User agents deposit items in the environment while environmental agent scatter
them to neighboring locations.

Locality User agents perceptions and actions happens only locally, while environmental
agents need to perceive and act at least at one hop of distance. Either continuous
and discrete topology are suitable.

Dependencies It requires an environment compliant to the A&A metamodel.
Example See Figure 5 for a visual example.
Implementation Environmental agents may perform periodic inspection or been triggered by a

specific event: either approaches are suitable and choice depend on performance
requirements.

Known Uses A fundamental element of stigmergy [17] and digital pheromone based applica-
tion [20,15,21]. In e-commerce applications the see-also hint is a typical example
of information diffusion were the topology is built upon a similarity criterion of
products.

Consequences Diffusion may not work when used in combination with other patterns that spread
information across the MAS: in particular diffusion opposes to Collective Sort
(Section 4.1).

See Also When used in combination with Evaporation (Section 4.2) or Aggregation (Sec-
tion 4.3), it allows for building complex behaviours: in particular, Evaporation +
Aggregation + Diffusion is the Stigmergy pattern.

spatially spread: although, other forms of diffusion may be conceived to produce
stable gradients [20].

5 Conclusion

In the engineering of systems with emergent properties, it is common practice
to rely on existing models of natural activities. Despite the existence of many
patterns for MAS – see [8,5,6,9] just to name a few – we currently lack a system-
atic patterns catalogue which could guide the designer of self-organising systems:
few notable exceptions include [24,1,2]. In this article, we provide an extension
to the pattern scheme described in [8] to better reflect the peculiarities of self-
organising systems. Furthermore, we describe a few patterns devised from the
self-organisation literature, namely, Collective Sort, Evaporation, Aggregation
and Diffusion: each pattern has been analysed with respect to the proposed
pattern scheme. Minor contributions of this article include

– recognising the need of a pattern catalogue and identifying the special role
of patterns in the engineering of artificial self-organising systems;

Design Patterns for Self-organising Systems 131

– recognising the qualitative differences between patterns for self-organising
systems with respect to MAS and object-oriented patterns;

– show how the composition of patterns is a challenging task: the evaluation of
a specific pattern requires the knowledge about the interplay of the dynamics.

Future works include

– identifying and using the appropriate graphical notation for describing pat-
terns;

– extending the pattern catalogue and validating the proposed pattern scheme.

References

1. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gam-
bardella, L.M., Ganguly, N., Roberto Montemanni, M.J., Montresor, A., Urnes,
T.: Design patterns from biology for distributed computing. ACM Transactions on
Autonomous and Adaptive Systems 1(1), 26–66 (2006)

2. De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-
organising emergent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins,
D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 28–49. Springer, Heidelberg
(2007)

3. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press,
New York (1977)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Professional Computing. Addison-Wesley, Read-
ing (1995)

5. Kendall, E.A., Krishna, P.V.M., Pathak, C.V., Suresh, C.B.: Patterns of intelligent
and mobile agents. In: Sycara, K.P., Wooldridge, M. (eds.) AGENTS ’98. 2nd
International Conference on Autonomous Agents, pp. 92–99. ACM Press, New
York (1998)

6. Aridor, Y., Lange, D.B.: Agent design patterns: elements of agent application de-
sign. In: Sycara, K.P., Wooldridge, M. (eds.) AGENTS ’98. 2nd International Con-
ference on Autonomous Agents, pp. 108–115. ACM Press, New York (1998)

7. Deugo, D., Weiss, M., Kendall, E.: Reusable Patterns for Agent Coordination.
In: Coordination of Internet Agents: Models, Technologies, and Applications, pp.
347–368. Springer, Heidelberg (2001)

8. Lind, J.: Patterns in agent-oriented software engineering. In: Giunchiglia, F., Odell,
J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 47–58. Springer, Heidelberg
(2003)

9. Cossentino, M., Sabatucci, L., Chella, A.: Patterns reuse in the PASSI methodology.
In: Omicini, A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071,
pp. 294–310. Springer, Heidelberg (2004)

10. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In: Bordini,
R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Programming Multi-Agent
Systems. LNCS (LNAI), vol. 3862, pp. 206–221. Springer, Heidelberg (2006)

11. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-
agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

132 L. Gardelli, M. Viroli, and A. Omicini

12. Viroli, M., Holvoet, T., Ricci, A., Shelfthout, K., Zambonelli, F.: Infrastructures
for the environment of multiagent systems. Autonomous Agents and Multi-Agent
Systems 14(1), 49–60 (2007)

13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

14. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organizing multiagent
systems. In: De Wolf, T., Saffre, F., Anthony, R. (eds.) 2nd International Workshop
on Engineering Emergence in Decentralised Autonomic Systems (EEDAS 2007),
ICAC 2007, University of Greenwich, London, UK, pp. 62–71. CMS Press, Jack-
sonville, FL, USA (2007)

15. Parunak, H.V.D., Brueckner, S.A., Sauter, J.: Digital pheromones for coordination
of unmanned vehicles. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS
2004. LNCS (LNAI), vol. 3374, pp. 246–263. Springer, Heidelberg (2005)

16. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems, Santa Fe Institute Studies in the Sciences of Complexity. Oxford
University Press, New York, US (1999)

17. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton Studies in Complexity.
Princeton University Press, Princeton, NJ, USA (2001)

18. Casadei, M., Gardelli, L., Viroli, M.: Simulating emergent properties of coordina-
tion in Maude: the collective sorting case. Electronic Notes in Theoretical Com-
puter Sciences 175(2), 59–80 (2007) (5th International Workshop on Foundations
of Coordination Languages and Software Architectures (FOCLASA 2006) (2006)

19. Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing self-organising MAS
environments: the collective sort case. In: Weyns, D., Parunak, H.V.D., Michel, F.
(eds.) Environments for Multi-Agent Systems III. LNCS (LNAI), vol. 4389, pp.
254–271. Springer, Heidelberg (2007)

20. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In: PerCom 2004. 2nd IEEE Annual Conference
on Pervasive Computing and Communications, pp. 263–273. IEEE, Los Alamitos
(2004)

21. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV
transportation systems. In: AAMAS 2005. 4th International Joint Conference on
Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, July 25-
29, 2005, pp. 67–74. ACM, New York (2005)

22. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: A
framework based on agents and artifacts. In: Weyns, D., Parunak, H.V.D., Michel,
F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg
(2007)

23. Parunak, H.V.D.: A survey of environments and mechanisms for human-human
stigmergy. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2005. LNCS
(LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006)

24. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. Journal of Systems Architecture 52(8–9), 443–
460 (2006)

	Design Patterns for Self-organising Systems
	Introduction
	Our Reference MAS Metamodel
	A Reference Pattern Scheme
	Patterns of Self-organising Systems
	Collective Sort Pattern
	Evaporation Pattern
	Aggregation Pattern
	Diffusion Pattern

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

