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Abstract

Natural systems are currently being regarded as rich
sources of inspiration for engineering artificial systems,
particularly when adopting the multiagent system (MAS)
paradigm. To promote a systematic reuse of mechanisms
featured in self-organizing systems, we analyse a selected
list of design patterns for recurrent problems in the litera-
ture. Starting from our reference MAS metamodel, we pro-
vide a complete characterization of each pattern according
to a reference scheme: in particular we describe the prob-
lem, the solution with respect to our metamodel, the natural
systems which have inspired the pattern and known appli-
cations. Furthermore, to contextualize the patterns within
an engineering workflow, we briefly describe our method-
ological approach for designing self-organizing MAS.

1 Introduction

Self-organization is a very compelling approach to the
engineering of complex systems because of its many inter-
esting properties, including adaptivity and robustness: un-
fortunately, they provide difficult-to-face design challenges,
too. However, from the analysis of natural systems, it is
possible to identify successful strategies and encode them
in the shape of patterns [3, 11]. First introduced in 1977
by Alexander in architectural design [1], the concept of
pattern has become popular in computer science with the
object-oriented paradigm [13]. A design pattern provides
a reusable solution to a recurrent problem in a specific do-
main: it is worth noting that a pattern does not describe an
actual design, rather it encodes an abstract model of the so-
lution using specific entities of the paradigm in use. The
use of design patterns offers several advantages such as re-
ducing design-time by exploiting off-the-shelf solutions and
promoting collaboration by providing a shared ontology.
Researchers involved in Multiagent System (MAS) domain
already synthesized several patterns: notable early contri-
butions in that direction were mostly concerned with the

life-cycle of agents, providing solutions related to resource
access, mobility and basic social skills [15, 2, 12]. These
patterns have been very useful in determining the function-
alities offered by agents platforms and environments.

In order to build a systematic catalog of patterns, it is
necessary to describe each pattern with respect to a known
scheme. The very basic scheme consists in name, prob-
lem, solution and consequences: for the object-oriented
paradigm a more specific and verbose scheme is provided
in [13]. As pointed out in [17, 12], since the agent paradigm
cannot be effectively characterised using object-oriented
abstractions, patterns for MAS should be described using
specific schemes. In particular, a candidate scheme should
reflect the peculiarities of the target MAS metamodel: to
this purpose, several pattern classification and schemes have
been proposed [17, 10].

The main contribution of this article is the characteri-
zation of patterns for self-organizing MAS, with respect to
our metamodel and a reference pattern scheme. It is worth
noting that, since the patterns described encode basic mech-
anisms, they may seem too general to be useful: nonethe-
less, we believe that building complex patterns on top of
simpler ones—as done in [3]— may allow for a deeper un-
derstanding of systems dynamics, hence improving control-
lability. So, we do not cover here patterns of the granularity
of stigmergy or field-based coordination—as done in [11].
Instead, we isolate the basic patterns that, when properly
combined, produce the complex patterns of self-organizing
systems: e.g. in the case of stigmergy the basic patterns
are evaporation, aggregation and diffusion. Furthermore,
as discussed later, basic patterns may be useful also when
used individually.

The remainder of the article is structured as follows: in
Section 2 we describe our MAS metamodel based on agents
and environmental resources, i.e. artifacts. We continue by
analysing each pattern, namely Replication, Collective Sort,
Evaporation, Aggregation and Diffusion: as far as the pat-
tern scheme is concerned, we adhere to the one described in
[17]. The reuse of patterns is a very crucial practice [10],
hence, in Section 3 we contextualise the reuse of patterns in



our methodological approach. Then, we conclude in Sec-
tion 4 by providing final remarks and listing future research
directions.

2 Patterns of Self-Organizing Systems

2.1 Our Reference MAS Metamodel

The MAS paradigm is generally acknowledged to be the
best paradigm for modelling natural systems and develop-
ing artificial self-organizing systems. Briefly, agents are au-
tonomous entities, situated in an environment that agents
can perceive and affect. Although being recognised as
one, the MAS paradigm is captured from different perspec-
tives in different metamodels emphasising specific features:
metamodels are often classified by the relevance of a spe-
cific features, e.g. the environment. When dealing with self-
organizing systems the most relevant features are a strong
notion of environment and support for indirect interactions
between agents.

We rely on the agents & artifacts metamodel (A&A)
we developed in the last few years [24]: a MAS is mod-
elled by two fundamental abstractions, agents and artifacts.
Agents are autonomous pro-active entities encapsulating
control, driven by their internal goal/task. When develop-
ing a MAS, sometimes entities require neither autonomy
nor pro-activity to be correctly characterised. This is typical
of entities that either play the role of targets for agent activi-
ties, or serve as tools to achieve a specific goal: we call these
entities artifacts. Artifacts are passive, reactive entities pro-
viding services and functionalities to be exploited by agents
through a usage interface. It is worth noting that artifacts
typically realise those behaviours that cannot or do not re-
quire to be characterised as goal oriented [24]. Artifacts me-
diate agents interactions and support coordination in social
activities, and embody the portion of the environment that
can be designed and controlled to support MAS activities
[28, 27]. Moving to a scenario involving cognitive agents,
artifacts act as fundamentals bricks for the workspace—
where interactions happen—as mediators of interaction and
encapsulating coordination functions [23].

Based on this metamodel, we focus here on architectural
aspects, considering a recurrent solution when designing
self-organizing MAS depicted in Figure 1. In a typical self-
organization scenario, agents perturb the environment, and
while the environment evolves to compensate the pertur-
bation, agents perception is modified, creating a feedback
loop able to sustain the self-organization process. Hence,
on the one hand we have agents exploiting artifacts ser-
vices, that we name user agents from now on. Although,
because of the enormous repertoire of behaviours that can
be exhibited by user agents in different scenarios, we can-
not further detail their role in the architecture. On the other

Figure 1. Basic architecture for a MAS featur-
ing environmental agents as artifacts admin-
istrators.

hand, artifacts provide basic services in terms of simple
local elaboration of agents requests. Because of the pas-
sive/reactive attitude of artifacts, they cannot autonomously
adapt their behaviour to meet the changing requirements of
a dynamic and unpredictable environment. Hence, we en-
vision MAS environments as built up of artifacts and envi-
ronmental agents: in particular environmental agents are in
charge of those goal-oriented behaviour needed for the man-
agement of the artifacts. Specifically, we separate the us-
age interface from the management interface, whose access
is restricted only to environmental agents: furthermore en-
vironmental agents may exploit artifacts inspectability and
malleability. It is worth noting that the characterisation of
environmental agent is only in relation with a specific arti-
fact, since an environmental agents for a given artifact may
be a normal user agent for another artifact.

The idea of having a managed resource and a resource
manager is not original, e.g. see Autonomic Computing ini-
tiative [16]. Indeed, adjusting artifact behaviour and status
over time is a crucial aspect since it allows for complex be-
haviour to emerge. In particular, this architecture supports
the positive/negative feedback loop together with agents:
since self-organization is an active process, it is often the
case that artifacts alone cannot close the feedback loop be-
cause of the lack of pro-activity, which is instead featured
by environmental agents.

In order to provide abstract examples for patterns, we
refer to the abstract MAS depicted in Figure 2 featuring
user agents, environmental agents and artifacts, and having
an arbitrary topology. It is worth noting that in our meta-
model there is no explicit notion of topology—although, a
topology could be implicitly modelled by granting environ-
mental agents access only to a subset of available artifacts,



Figure 2. (a) A reference abstract MAS with
an arbitrary topology.

Figure 3. A compact representation equiva-
lent to the MAS depicted in Figure 2.

or explicitly represented by exploiting the A&A notion of
workspace [25]. For the sake of simplicity, we associated
one user and one environmental agent to each artifact: how-
ever, a more realistic scenario would involve several user
agents and a few of environmental agents for each arti-
fact. To provide readers with an intuitive visual explana-
tion of pattern dynamics, we use the compact representa-
tion depicted in Figure 3 where each node represents the
coupling of one artifact, one environmental agent and some
user agents, hence being equivalent to the MAS in Figure
2. Different shapes are used to represent different kinds of
information, physical items and the like, depending on the
pattern context and application domain.

2.2 A Reference Pattern Scheme

In this paper we adhere to the scheme for MAS pat-
terns proposed in [17] and briefly summarized in Table 1.
It is worth noting that literature proposes several pattern
schemes, e.g. see [13, 10]: although, in our opinion, the one
described in [17] is a good reference for synthesizing pat-
terns for self-organizing MAS. As a future work, we plan to
propose our pattern scheme to better reflect our metamodel
and handle specific concerns of self-organizing systems.

Name The name of the pattern
Aliases Alternative names
Problem The problem solved by the pattern
Forces Trade-offs between metrics di-

mensions
Entities Entities participating to the pattern
Dynamics Entities interactions
Dependencies Environmental requirements
Example An abstract example of usage
Implementation Hints on implementation
Known Uses Existing applications using the

pattern
Consequences Effects on the overall system de-

sign
See Also References to other patterns

Table 1. The pattern scheme for MAS accord-
ing to the MASSIVE approach [17].

Figure 4. Replication algorithm: (a) an initial
state (b) the desired final state.

2.3 Replication Pattern

Natural systems typically feature replication mecha-
nisms in order to increase security and robustness. For
instance each cell of the human body owns a local copy
of the DNA: this allows for recovering minor mutations.
Furthermore, replication lowers the time required to access
a resource since (i) local copies are easier to reach and
(ii) copies can be used concurrently, hence requiring less
queue-time: this aspect is less evident but it actually holds
both in biological and social systems. Table 2 summarizes
the pattern features, while Figure 4 provides an intuitive ex-
ample.

2.4 Collective Sort Pattern

Social insects tend to arrange items in their surroundings
according to specific criteria, e.g. broods and larvae sorting
in ant colonies [6, 7]. This process of collectively group-
ing items is commonly observed in human societies as well,
and serves different purposes, e.g. garbage collection. Also



Name Replication
Aliases Duplication, Redundancy
Problem (1) How can we lower access time to infor-

mation? (2) In case of attack to artifacts or
failure, how can we avoid loosing informa-
tion?

Forces Replication ensure better security and faster
access at the price of more memory occupa-
tion.

Entities The pattern involves artifacts, user agents
and environmental agents.

Dynamics User agents inject information in the ar-
tifacts which have to keep a time-stamp
for stored information. Environmental
agents monitor artifacts for new informa-
tion, which is eventually sent to neighbor-
ing artifacts.

Dependencies It requires an environment compliant to the
A&A metamodel.

Example See Figure 4 for a visual example.
Implementation Environmental agents may perform peri-

odic inspection or been triggered by an in-
sertion action: either approaches are suit-
able and choice depend on performance re-
quirements. The forwarding can be imple-
mented in several ways: for example, in
the flooding approach new information is
forwarded to all neighboring nodes but the
source.

Known Uses (1) Cache memories in computer architec-
ture partially replicate RAM content to al-
low for faster access to data. (2) Redundant
Array of Independent Disks (RAID) solu-
tions are used for increasing access speed
or recovering purpose, depending on the
RAID configuration. (3) In Grid Comput-
ing infrastructures [4], local copies of data
are often used to reduce network latency.

Consequences Replication may not work when used in
combination with other patterns that spread
information across the MAS: in particular
replication does not work with Collective
Sort (Section 2.4) and Diffusion (Section
2.7).

See Also -

Table 2. The table summarizes the replication
pattern features according to the reference
scheme.

in artificial systems collective sort strategies may play an
important role: for instance, grouping together related in-
formation helps to manage batch processing.

We consider our previous explorations of Collective Sort
dynamics in a MAS context [8, 14, 26] in order to synthe-
size a pattern. From an arbitrary initial state, see Figure
5, the goal of Collective Sort is to group together similar in-
formation in the same node, while separating different kinds
of information as shown in Figure 5b. Although, this is not
always possible: indeed, if we consider a network having
two nodes and three kinds of information, two of them are

Figure 5. Collective sort (a) an initial state (b)
a possible final state.

going to coexist on the same node. Due to random initial
situation and asynchronous interactions the whole system
can be modelled as stochastic. Hence, it is not generally
known a priori where a specific cluster will appear: clusters
location is an emergent property of the system [8], which in-
deed supports robustness and unpredictable environmental
conditions. Table 3 summarizes the features of the collec-
tive sort pattern.

2.5 Evaporation Pattern

In social insects colonies coordination is often achieved
by the use of chemical substances, usually in the form of
pheromones: pheromones act as markers for specific activi-
ties, e.g. food foraging [6, 7]. Specifically, these substances
are regulated by environmental processes called aggrega-
tion, diffusion in space and evaporation over time: each
process can be captured by a specific pattern, hence, it is
analysed separately. This class of mechanisms for indirect
coordination mediated by the environment is called stig-
mergy and it has been widely applied in artificial systems
engineering [19, 22, 29].

Evaporation is a process observed in everyday life, al-
though with different implications: e.g. from scent intensity
it is possible to deduce amount and distance of its source.
In the case of insect colonies, marker concentration tracks
activities: e.g. absence of pheromone implies no activity or
no food source discovered. In ant food foraging [7] when a
food source is exhausted, the pheromone tray is no longer
reinforced and slowly evaporates.

Evaporation has a counterpart in artificial systems that is
related to information obsolescence [23]. Consider a web
page listing several news: fresh information is inserted at
the top of the page and news fade as time passes, which can
be translated in visual terms in a movement towards the end
of the page. In general, evaporation can be considered a
mechanism to reduce information amount, based on a time
relevance criterion. As an example, starting from an ini-
tial state, see Figure 6a, evaporation removes old informa-
tion over time and, in absence of new information insertion,



Name Collective Sort
Aliases Brood Sorting, Collective Clustering
Problem MAS environments that does not explicitly

impose constraints on information reposito-
ries may suffer from the overhead of infor-
mation discovery.

Forces Optimal techniques requires more compu-
tation while reducing communication costs:
on the other hand, heuristics allows for
background computation but increase com-
munication costs.

Entities The pattern involves artifacts, user agents
and environmental agents.

Dynamics User agents inject information in the arti-
facts. The artifacts have to provide specific
content inspection primitives depending on
the implementation. Environmental agents
monitor artifacts for new information, and
depending on artifacts content may decide
to move an information to a neighboring ar-
tifacts.

Dependencies It requires an environment compliant to the
A&A metamodel.

Example See Figure 5 for a visual example.
Implementation Environmental agents may perform peri-

odic inspection or been triggered by an in-
sertion action: either approaches are suit-
able and choice depend on performance re-
quirements. Moving information requires
an aggregated view upon artifacts content,
e.g. using counters or spatial entropy mea-
sures: in the case this is not feasible or too
expensive, content sampling techniques can
be used, see [8] for a detailed discussion.

Known Uses Explorations in robotics for sorting a phys-
ical environment [6].

Consequences Collective Sort may not work when used in
combination with other patterns that spread
information across the MAS: in particular
collective sort does not work with Replica-
tion (Section 2.3) and opposes to Diffusion
(Section 2.7).

See Also -

Table 3. The table summarizes the features
of the collective sort pattern according to the
reference scheme.

eventually erases everything, see Figure 6b.

2.6 Aggregation Pattern

Pheromone deposited in the environment is spon-
taneously aggregated, that is separate quantities of
pheromone are perceived as an individual quantity but with
greater intensity [6, 7], see Figure 7 for a visual example.
Aggregation is a mechanism of reinforcement and is also
observable in human social tasks [23, 21]. The ranking
mechanism is a typical example: when browsing the In-
ternet someone finds an interesting fact, he/she can leave
a (reinforcement) comment that is typically anonymous and

Figure 6. Evaporation (a) an initial state (b)
the final state with no reinforcement.

Name Evaporation
Aliases None to our knowledge.
Problem MAS environments can soon become over-

whelmed by information deployed by
agents.

Forces Higher evaporation rates release memory,
but require more computation: furthermore,
evaporated information cannot be recov-
ered!

Entities The pattern involves artifacts, user agents
and environmental agents.

Dynamics User agents inject information in the ar-
tifacts. The artifacts assign a time-
stamp/counter to the received information.
Environmental agents erase obsolete infor-
mation/information whose counter reached
zero: eventually, all the information is re-
moved.

Dependencies It requires an environment compliant to the
A&A metamodel.

Example See Figure 6 for a visual example.
Implementation Environmental agents may perform peri-

odic inspection or been triggered by a spe-
cific event: either approaches are suitable
and choice depend on performance require-
ments.

Known Uses A fundamental element of stigmergy [7]
and digital pheromone based application
[19, 22, 29].

Consequences -
See Also When used in combination with Aggre-

gation (Section 2.6) or Diffusion (Section
2.7), it allows for building complex be-
haviours: in particular, Evaporation + Ag-
gregation + Diffusion is the Stigmergy pat-
tern.

Table 4. The table summarizes the features of
the evaporation pattern according to the ref-
erence scheme.

automatically aggregated with comments of other users. It
is then evident that, while evaporation is driven by the en-
vironment, aggregation is driven by the user agent. When
used in combination with evaporation, aggregation lets the
designer close a positive/negative feedback loop, allowing



Figure 7. Aggregation (a) an initial state (b)
the final state.

Figure 8. Diffusion dynamics (a) an initial
state (b) the desired final state.

for auto-regulated system in self-organization and Auto-
nomic Computing [16] styles.

2.7 Diffusion Pattern

When pheromone is deposited into the environment it
spontaneously tends to diffuse to neighboring locations [7].
This process, called diffusion, is omnipresent in nature and
hence is studied in several fields under different names, e.g.
osmosis in chemistry. Starting from an arbitrary state, see
Figure 8a, diffusion eventually distribute the information
equally across all nodes [3], see Figure 8b.

While aggregation and evaporation processes are often
used in combination and act locally, diffusion can be used
alone and requires a notion of topology. With respect to
replication, in diffusion the initial quantity of information
is preserved but spatially spread: although, other forms of
diffusion may be conceived to produce stable gradients [19].

3 The Role of Patterns in a Methodology for
Self-Organizing Systems

Pattern catalogues are an invaluable tool for self-
organizing systems designers, since a known pattern is go-
ing to display the desired emergent properties when prop-
erly used. To support this statement, we briefly describe our

Name Aggregation
Aliases None to our knowledge.
Problem Large scale MAS suffer from the amount

of information deposited by agents, which
have to be sifted in order to synthesize
macro information.

Forces Higher aggregation rates provide results
closer to the actual environment status, but
require more computation.

Entities The pattern involves artifacts, user agents
and environmental agents.

Dynamics User agents inject information in the arti-
facts. Environmental agents look for new
information and aggregate it with older in-
formation to produce a coherent result.

Dependencies It requires an environment compliant to the
A&A metamodel.

Example See Figure 7 for a visual example.
Implementation Environmental agents may perform peri-

odic inspection or been triggered by a spe-
cific event: either approaches are suitable
and choice depend on performance require-
ments. It is worth noting that aggregation
is a very simple task and could be auto-
matically handled by artifacts, when prop-
erly programmed: although, it is easier to
have separate agents for different function-
alities, which can be individually paused or
stopped.

Known Uses A fundamental element of stigmergy [7]
and digital pheromone based application
[19, 22, 29]. In e-commerce applications
customers feedback is usually aggregated,
e.g. average ranking, in order to guide other
customers.

Consequences -
See Also When used in combination with Evapo-

ration (Section 2.5) or Diffusion (Section
2.7), it allows for building complex be-
haviours: in particular, Evaporation + Ag-
gregation + Diffusion is the Stigmergy pat-
tern.

Table 5. The table summarizes the features of
the aggregation pattern according to the ref-
erence scheme.

approach for designing self-organizing systems, contextu-
alizing the reuse of patterns in the workflow. Due to space
constraints, we here deal only with methodological aspects
related to patterns: for a more comprehensive discussion
readers can refer to [14].

When developing systems featuring self-organizing be-
haviours and emergent properties, designers have to con-
sider the following issue: how can we design the individ-
ual agent’s behaviour in order to let the desired property
emerge? The self-organization community generally ac-
cepts that, to deal with the individual dimension, two ap-
proaches are available: (i) devising by decomposition an
ad-hoc strategy that will solve the specific problem; (ii) ob-



Name Diffusion
Aliases Plain Diffusion, Osmosis.
Problem In MAS where agents are only allowed to

access local, agents reasoning suffer from
the lack of knowledge about neighboring
nodes.

Forces Higher diffusion radius brings information
further away from its source, providing a
guidance also to distant agents: although,
the infrastructure load increases, both in
terms of computation and memory occu-
pation. Furthermore, diffused information
does not reflect the current status of the en-
vironment hence providing false hints.

Entities The pattern involves artifacts, user agents
and environmental agents.

Dynamics User agents inject information in the arti-
facts. A weight is assigned to the informa-
tion from artifacts or user agents. Environ-
mental agents diffuse information decreas-
ing the weights in local node and corre-
spondingly increasing the weights in neigh-
boring nodes.

Dependencies It requires an environment compliant to the
A&A metamodel.

Example See Figure 8 for a visual example.
Implementation Environmental agents may perform peri-

odic inspection or been triggered by a spe-
cific event: either approaches are suitable
and choice depend on performance require-
ments.

Known Uses A fundamental element of stigmergy [7]
and digital pheromone based application
[19, 22, 29]. In e-commerce applications
the see-also hint is a typical example of
information diffusion were the topology is
built upon a similarity criterion of products.

Consequences Diffusion may not work when used in com-
bination with other patterns that spread in-
formation across the MAS: in particular dif-
fusion does not work with Replication (Sec-
tion 2.3) and opposes to Collective Sort
(Section 2.4).

See Also When used in combination with Evapora-
tion (Section 2.5) or Aggregation (Section
2.6), it allows for building complex be-
haviours: in particular, Evaporation + Ag-
gregation + Diffusion is the Stigmergy pat-
tern.

Table 6. The table summarizes the features of
the diffusion pattern according to the refer-
ence scheme.

serving a system that achieves similar results, and trying
to reverse-engineer the strategy. While being desirable, the
former approach is applicable only to a limited set of sim-
ple scenarios: due to the non-linearity in the entities be-
haviours, the global system dynamics become quite diffi-
cult to predict. Instead, the latter approach is commonly
regarded as more fruitful: it is possible to identify patterns
in natural systems that can be effectively applied to artifi-

cial systems [3, 11, 6, 18]. Patterns provide reusable effec-
tive solutions to recurrent problems: in particular, patterns
not only specify structure but also dynamics, and hence, al-
low to encode the dynamics responsible for emergent prop-
erties. Although, it is quite unlikely to find a pattern that
completely fits a given problem: hence, it is a common prac-
tice to slightly modify a pattern to fits the designers needs.
Due to the complex interactions of self-organizing systems,
small modifications may lead to unexpected results: then,
can we guarantee that the specific emergent property will
actually appear? Providing guarantees about the emergence
of the desired global properties is still an open issue: while
automatic verification of properties is typically a viable ap-
proach to deterministic models, when moving to stochas-
tic models verification becomes more difficult, as existing
works in this context are seemingly still immature. Then, it
is useful to resort to a different methodology, mixing formal
tools and empirical evaluation, so as to support the analysis
of the behaviour and qualities of a design.

Our approach consists in evaluating several models with
the goal of discovering the one that could provide the qual-
ity attributes required for the application at hand: such a
task is performed during the early design phases of the soft-
ware engineering process and allows for evaluating candi-
date prototypes before committing to the actual design.

In particular, our approach is articulated in three phases:

Modelling to develop an abstract formal specification of
the system, based on known patterns;

Simulation to qualitatively and quantitatively investigating
the dynamics of the system against the expectation set
by the patterns;

Tuning to change model parameters to adjust system be-
haviour.

Having defined the applications goal and the desired sys-
tems dynamics we enter the modelling phase. We start by
searching among the known patterns of natural activities
a system that exhibits or approximates the target dynam-
ics. This step implies the existence of some sort of natural
patterns catalogue, a necessary tool for an engineer of self-
organizing systems. Although a full catalogue of this kind
does not exist yet, several efforts from different research
groups are moving towards that direction: several patterns
having strong applications in artificial systems have already
been identified and characterised [6, 3, 18]. Hence, as pat-
terns that perfectly match the target system dynamics can
hardly be found, it is still feasible to identify some can-
didate patterns that approximate such dynamics, typically
requiring some sort of modifications. As a result, a candi-
date system design necessarily needs some sort of automatic
analysis, such as simulation and automatic verification of
properties, which ultimately requires a system description



in terms of a formal language. Formal languages promote
unambiguity and allow to precisely select the features to be
modelled and those to be abstracted away.

So, the deliverable of the modelling phase is a formal
specification, which in combination with simulation tools
can be used to generate simulation traces. To perform
stochastic simulations it is necessary to provide a statisti-
cal characterisation of the processes described in the spec-
ifications. Such characterisation can be easily provided by
assigning a rate of action defined according to a suitable sta-
tistical distribution: typically, the preferred distribution is
the exponential one because of the memoryless property—
to generate new events it is not necessary to know the whole
events history, but only the current state.

The main problem in the simulation is to devise valid
ranges for the system parameters and action rates: we do
not provide any actual strategy for devising those parame-
ters, but they should reflect actual performances in the de-
ployment environment. Then, system specifications along
with parameters are used to automatically generate simula-
tions, providing a qualitative and quantitative feedback on
the system convergence to the target dynamics.

Unfortunately, since self-organizing systems tend to be
very sensitive on initial conditions and working parameters,
it is very likely that simulations of initial strategies do not
exhibit interesting behaviours. In the tuning phase, free pa-
rameters are adjusted within the ranges of feasibility and
simulations are performed: if none of the parameters pro-
duce the desired dynamics the model has to be slightly mod-
ified again. If the desired dynamics are previewed then the
parameters works as a coarse set for an actual implementa-
tion. Although, at the end of the tuning process, we may
realise that the devised set of parameters either

• does not satisfy performance expectations;

• has unrealistic values when compared to the execution
environment;

• deviates the system from the desired convergence
point.

In any of these scenarios we cannot proceed to actual design
phase since the system would not behave properly when de-
ployed into the actual environment. Hence, it is required
to go back to the modelling phase and evaluate other ap-
proaches.

When a model meets the target dynamics, and the param-
eters lie within the allowed ranges, further elaborations are
possible. Indeed, since stochastic simulation traces a par-
tial view on the possible system dynamics, it does not pro-
vide actual guarantees about the system behaviour. Instead,
providing guarantees about system properties and perfor-
mance expectations is the goal of formal analysis tools and

techniques. For instance, model checking uses system spec-
ifications and statements about the properties to explore
the states space of the target system and test if the state-
ments hold [9]. Short term research goals include evaluating
formal analysis techniques for providing actual guarantees
about system properties.

4 Conclusion

In the engineering of systems with emergent properties,
it is common practice to rely on existing models of natu-
ral activities. Despite the existence of many patterns for
MAS—see [17, 15, 2, 10] just to name a few—we currently
lack a systematic patterns catalogue which could guide the
designer of self-organizing systems. A few notable con-
tributions about self-organizing patterns include [3, 11]. In
this article, we presented selected patterns synthesized from
the self-organization literature, namely, Replication, Col-
lective Sort, Evaporation, Aggregation and Diffusion. Each
pattern has been analysed using the scheme proposed in [17]
to describe MAS patterns.

In order to clarify the role of patterns within the spe-
cific context of self-organizing systems engineering, we
provided a brief description our methodological approach
based on modelling, simulation and tuning.

Short-term research goals include: using a standard
graphical notation for describing patterns; proposing a pat-
tern scheme for self-organizing systems that better reflect
our MAS metamodel; evaluating techniques, such as model
checking [9], for providing guarantees about the actual
emergence of system properties. Medium-term research
goals include: integrating our approach in existing agent-
oriented software engineering methodologies such as Gaia
[30], ADELFE [5], and SODA [20]; applying the full-cycle
methodology to case studies, as already done for Collective
Sort [8, 26].
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