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We briefly discuss about the role of the environment in a self-
organising system and how to apply self-organisation principles to 
build a multi-agent system (MAS) environment. We describe a design 
methodology for complex systems featuring emergent properties: our 
approach mainly relies on the use of formal analysis tools and 
languages in order to provide better guarantees of effective global 
system behaviour. In order to explain the details of the methodology, 
we apply it to a case of dynamic resource allocation strategy for a 
MAS environment. 

1. Self-Organisation and MAS Environment 
The typical MAS scenario involves a set of autonomous situated entities able to 
interact with each other and the environment in order to achieve a common 
goal: as pointed out in [1], since agents are limited in capabilities, they cannot 
control, neither completely perceive, the global dynamics of the system. On the 
other hand, self-organising systems (SOSs) are systems composed of entities 
with such a partial control, and which locally interact in order to create or 
maintain an ordered structure under environment perturbations: in these 
systems—due to the intricacy of interactions—it may happen that global 
phenomena emerge [2]. 
The MAS community started considering self-organisation theory as an 
inspiration for systems development only in the last few years, specifically since 
the first applications inspired by ants behaviour. Since then, several initiatives 
driven by the same vision flourished such as Amorphous Computing [3] and 
Autonomic Computing [4]. 
In this article we focus on the idea that the environment is the key element in 
the engineering of a MAS featuring self-organising properties. In the definition of 
self-organising system there is a crucial aspect which is sometime 
underestimated: “under environment perturbations” means that the environment 
plays an active role, which may be interpreted as hostile due to the fact that it 
perturbs agent situation. Typically, agents have to learn—by evolution or other 
mechanisms—how to reduce the possibly disrupting effect of the environment: 
for example flocking reduces wind friction, while schooling let fishes avoid 
predators [2]. Indeed, it is the agent-environment coupling that creates the 
feedback loop, balancing between positive and negative feedback [2]. 
Furthermore, the environment can also be seen as a collective memory used for 
self-organisation purposes, as it can be designed to retain the history of the 



actions of the agents [5]. For example consider pheromone trails in ant 
colonies, where the environment collects the pheromone laid by the ants, 
performing aggregation, diffusion and evaporation processes. Hence, self-
organisation is considered as a mean for “reducing agent complexity”, because 
part of that complexity is delegated to—i.e. is hidden into—the environment. 
A dual aspect is that environment design may benefit from using self-
organisation principles. In general, it is desirable that a software system self-
configures and automatically recovers from errors, i.e. that it adopts self-
healing—a basic principle of Autonomic Computing [4]. The environment might 
exploit self-organising techniques for the management of services to be 
provided to agents: for example, in this article we briefly describe a case of 
dynamic resource allocation, though other applications such as security [6, 7] 
could be used. 
As far as engineering the environment is relevant in the development of self-
organising MAS, in this paper we focus on methodological aspects. We note 
that currently none of the AOSE methodologies—see e.g. Gaia [8] and SODA—
take into account self-organisation issues. The few exceptions, such as 
ADELFE [9], still do not promote any kind of practice to guarantee effectiveness 
of global system properties. For example, how can we design the environment 
features of a MAS exploiting stigmergic-coordination so as to guarantee that the 
agents will eventually find a path between the source and the target location? 
Based on initial explorations we developed in [10, 7], our goal here is to outline 
a methodological approach to address this kind of questions. 

2. Towards a Methodology for Designing Self-Organising Systems 
Our approach plugs into the design stage of system development, and can be 
possibly used in combination with existing methodologies—future works in this 
context will pursue this research line. The first observation is that it is not very 
clear—both for agent-based and traditional methodologies—how the deliverable 
of the analysis process maps onto a specific design. There is often an early 
design stage where several approaches have to be evaluated, for example 
making preliminary feasibility tests: in this stage we do not want to deal with all 
the details of a complete design. 
The first step of our approach occurs in this stage: we use formal languages to 
specify abstract models of possible architectural solutions, in order to nurture 
evolving ideas. Specifically, in the case of self-organising systems where 
complex patterns arise from low level interaction, selective models can make us 
focus on the most crucial properties of interest. The use of formal languages for 
this scope has several advantages like unambiguity and precise selection of the 
subsystem to model, as well as opening to the possibility of using general 
purpose tools to perform automatic analysis. 
These formal models are then used in the second stage to generate simulation 
runs, where expected behaviours of the system are previewed and analysed. 
Simulation is a very useful tool to provide a first feedback on the suitability of a 
solution: if the simulation results are not satisfying another approach can be 
tested or some parameter can be adjusted—i.e. we go back to the first phase 
until we get useful results. Though it is widely believed that simulations may be 
the only tool to investigate self-organising systems and emergent phenomena, 



we observe that from an engineering point of view they do not provide actual 
guarantees: the final system might in some specific cases exhibit completely 
different behaviours. 
In spite simulation is a valuable tool both to observe qualitative behaviours and 
provide a coarse set of system parameters, we also see potentialities in formal 
analysis tools. Indeed, in the third stage we thus envision the use of model 
checking tools to verify system properties [11], and specifically emergent ones. 
The model checking process involves both system specifications and 
statements about the properties to verify: these elements are used by the model 
checker to explore the states space of the target system in order to test if the 
statements hold [11]. These statements might be expressed in several 
formalisms and affect the model checking algorithm: in common languages we 
can express statements such as “will deadlock eventually occur in the system?”. 
Traditional model checking algorithms deal only with finite state deterministic 
systems [11], which are apparently not good approximations for a self-
organising system. However, it is often possible to constrain the state space, or 
to apply abstraction techniques to see a syntactically infinite system as a 
semantically finite one [12]. Moreover, model checking algorithms exist that are 
able to handle probabilistic systems [13]: in this model it is possible to express 
statements such as “is there a probability greater than 50% that the property X 
will eventually occur ?”. Other examples also consider time, and can deal with 
statements like “will the system reach the state S within 5 seconds with a 
probability greater than 90% ?”. 
As far as self-organising systems are concerned, good models of system 
behaviour should be able to describe stochastic phenomena, i.e. phenomena 
which duration and/or execution time is aleatory. Sometimes, stochasticity is 
inherent to the problem subject to investigation and cannot be abstracted away: 
for example the time to execute an agent’s action could be an aleatory variable. 
In general, emergence of properties appears to be intrinsically related to 
stochasticity, hence, we would like to investigate how it may affect the way to 
model check emergent system properties. At the end of this investigation we 
would like to be able to answer questions such as “will the emergent property X 
occur in the system within 5 minutes with a probability greater than 95% ?”. 
Answering that kind of statements will help us to better understand the 
dynamics of self-organising systems and improve the design and engineering 
process of modern complex systems. Applying forthcoming research results in 
the context of model checking for stochastic systems is hence an important part 
of our research. 

3. Designing a MAS Environment 
In this section we describe an example application of this approach, whose 
simplicity should help focussing on the most relevant details. We want to deploy 
a MAS, where agents can exploit resources provided by the environment1. Due 
to scalability and quality of service issues, we would like the environment to 
adaptively allocate resources depending on the number of requests. 
                                                 
1 For the sake of clarity, in this example we consider only a single kind of resource and abstract 
away the inner working details. 



Hence, the objective is to design a dynamic resource allocation (DRA) strategy. 
From Section 2, we recall that the first stage is about formalising candidate 
solutions without providing all the details of a real design. Since the number of 
agents inside the system is an aleatory variable, any scheduling algorithm 
which makes assumptions about the number of agents cannot be applied. A 
simple strategy that promotes a self-organising style is such that: (i) each 
resource that receives a request clones itself, (ii) after an arbitrary idle time the 
resource is deallocated. We can now model the above strategy using a formal 
language like pi-calculus—as we already did in [7]—or any other formal 
language that suits the requirements listed in Section 2: in particular we use the 
Maude tool [14] because it eventually supports our approach at each stage2. 
A formal model enables investigation by simulating system dynamics. Having 
analysed the simulation results for several parameters values, we found three 
qualitative behaviours: (i) insufficiency of resources, (ii) dynamic equilibrium and 
(iii) redundancy of resources. In particular, the second one adapts the resource 
number to the actual number of agents: if the arrival rate of agents is constant, 
we observe a periodical evolution of the number of agents to be served and the 
number of free resources, see Figure 1. Notice that the dynamic equilibrium 
condition is an emergent property of the system! 
 

 
Figure 1 The chart shows the behaviour of the system in the dynamic 
equilibrium condition: the number of free resources follows the number of 
agents to be served with an offset of π/2. 
 
From the first two stages we have a formal model of the strategy, we have 
analysed simulation results providing evidence of a qualitative behaviour—see 
Figure 2—and we have devised a coarse set of parameters to tune the system. 
 

                                                 
2 Details about the use of Maude and the model specifications can be downloaded from 
www.alice.unibo.it/download/spim/aica-2006.zip
 



 
 

 
Figure 2 The system modelled exhibits three qualitative behaviours: 
insufficiency of agents (left), redundancy of resources (right), dynamic balance 
between agents and resources (bottom). 
 
The third stage would be to about giving guarantees of the observed behaviour, 
i.e. verifying properties of the system via model checking: this is very important, 
since the system includes stochastic phenomena and each simulation run is 
different. Referring to the DRA strategy, an interesting property to verify might 
be “will the number of free resources lie in the range (A,B) with a probability 
greater than 95% ?”: this statement assumes that the parameters are tuned in 
order to have a dynamic equilibrium condition and the range is adjusted 
according to the parameters values. If this condition is verified, we have 
stronger guarantees—with respect to simulations results—that the system will 
operate in the desired working condition: in other words, there will not be neither 
insufficiency nor redundancy of resources. 
We are currently working on the implications of extending model-checking to 
stochastic processes, since Maude implements only traditional model checking 
algorithms [14]. 

4. Ongoing and Future Works 
In this article we elaborated on the relevance of self-organisation theory to the 
engineering of MAS environments, highlighting the essentiality of providing 



guarantees about emergent properties. We outlined a basic design 
methodology for the engineering of system with emergent properties, focussing 
on the role of formal languages and model checking algorithms. Due to space 
constraint we have not described issues related to tools or implementation. 
We made some experiences with the Maude tool, a meta-programming 
language in the declarative style, suitable for modelling systems and their 
dynamics. More precisely, Maude is a high-performance reflective language 
supporting both equational and rewriting logic specifications for programming a 
wide range of applications [14]. Among the other features, Maude provides a 
Linear Temporal Logic (LTL) model checker which can be used to verify 
whether a specification satisfy some safety and liveness properties.  
We developed a framework to quickly simulate system dynamics based on the 
Gillespie’s algorithm [15], and modelled the DRA case. We are currently 
evaluating model checking algorithms for verifying properties of stochastic 
concurrent systems. 
We plan to further investigate these topics as we believe that self-organising 
systems really depends on the notion of environment, and that the environment 
will surely benefit from the development of self-organising techniques.  
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