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Abstract. The intrinsic complexity of self-organising MASs (multi-agent
systems) suggests the use of formal methods at early stages of the design
process in order to predict global system evolutions. In particular, we eval-
uate the use of simulations of high-level system models to analyse prop-
erties of a design, which can anticipate the detection of wrong design
choices and the tuning of system parameters, so as to rapidly converge
to given overall requirements and performance factors.

We take intrusion detection (ID) as a case, and devise an architecture
inspired by principles from human immune systems. This is based on
the TuCSoN infrastructure, which provides agents with an environment
of artifacts—most notably coordination artifacts and agent coordination
contexts. We then use stochastic π-calculus for specifying and running
quantitative, large-scale simulations, which allow us to verify the basic
applicability of our ID and obtain a preliminary set of its main working
parameters.

1 Introduction

The trend in today information systems engineering is toward an increasing
degree of complexity and openness, leading to rapidly changing requirements
and highly dynamic environments. As a consequence, the cost of system man-
agement is becoming comparable to the cost of the system itself [1]. This phe-
nomenon has led to the challenge of discovering new ways of engineering systems
inspired by social and natural sciences. For instance the Autonomic Computing
initiative tries to face complexity by taking inspiration from the self-regulating
behaviour of the biological processes [1, 2]. Other visions, such as Amorphous
Computing [3] and Spray Computers [4] have sprung sharing the same objec-
tive. Self-organisation is a promising approach to tackle these issues without
explicit pressure or constraints from outside the system: self-organisation is usu-
ally the result of the interaction and coordination at a local level of a set of
agents, each simpler in structure than the global task achieved [5].

In this paper we conduct a preliminary study on methodological aspects of
the engineering of self-organising MASs. Because of the intrinsic complexity of
these systems, and the difficulties in predicting their behaviour and properties,
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we find it crucial to exploit formal tools for simulating their dynamics at the
early stages of design. In the case of self-organising MASs, in fact, this approach
appears to be almost unavoidable in order to nurture evolving ideas and design
choices, and to effectively tune parameters of the final system.

Among the various formal models to specify quantitative aspects of MASs—
based on process algebras [6], Petri Nets [7], and automata [8]—we promote the
use of the stochastic π-calculus process algebra [9]. While it allows for a great
expressiveness in representing key aspects such as interactions and concurrent
activities, π-calculus also features full compositionality and modularity proper-
ties, which are crucial to scale up with system complexity.

This language is basically unexplored in the context of self-organising MASs:
on the one hand, its simulation tools are relatively recent (see e.g. [10]), on the
other, it was primarily inspired by the need of modelling biological systems [11].
However, we show that stochastic π-calculus can be fruitfully applied to the MAS
paradigm as well: as far as stochastic aspects are concerned, the typical com-
plexity of agent internal machinery can be suitably abstracted away, focussing
instead on agent interactions and high-level activity changes. Then, tools like
SpiM (Stochastic PI-calculus Machine [10]) can be effectively used to track the
dynamics of global system properties in stochastic simulations, validating design
directions, inspiring new solutions, and determining suitable system parameters.

In this paper, we apply these ideas to study an intrusion detection (ID) infras-
tructure for MASs, which detects malicious agents in an open context. The so-
lution we consider is inspired by principles of human immune system [12], where
agents resembling lymphocytes are dynamically created and updated with the
goal of detecting malicious behaviours. The infrastructure we devise is based on
the TuCSoN technology [13]1. This allows us to structure a MAS not only in
terms of agents, but also with tuple centres as coordination artifacts [14] and
agent coordination contexts (ACC) as boundary artifacts [15]. Coordination ar-
tifacts are used to model resources in the environment on which (potentially)
malicious agents act upon. ACCs specify and enact the access policies which
each agent is subject to, and can be used to both (i) reify relevant information
about the agent/artifacts interaction, which the lymphocyte agents can inspect
to detect abnormal sequences of actions, and (ii) to abruptly deny malicious
agents to access the MAS environment.

To evaluate the impact of different design choices and parameters of the ID
infrastructure—such as inspection/detection rates, number of lymphocytes, up-
grade policy for lymphocytes, and the like—we simulate the behaviour of differ-
ent scenarios using SpiM specifications.

The rest of the article is structured as follows. In Section 2 we briefly high-
light the main mechanisms and properties of intrusion detection and the human
immune system, and apply them to a general architecture for a MAS based on
TuCSoN. Section 3 motivates the use of π-calculus and its stochastic extension,
providing an application example related to our ID domain using SpiM. In Sec-
tion 4 we examine performance of several scenarios of the MASs infrastructure

1 http://tucson.sourceforge.net
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introduced. Finally, Section 5 concludes providing final remarks and listing main
directions for future research.

2 Human Immune System and a MAS Architecture

In this section we first depict the main aspects of ID systems (IDSs), and then
describe the structure and main functionalities of the human immune system. We
are not concerned about accurately modelling or mimicking the human immune
system, but we rather gather useful principles to engineer secure self-organising
applications, which are then used to sketch a general architecture for MASs
applying some of these concepts.

2.1 Security and IDSs in Information Systems

There are several mechanisms used to protect information systems, but usually
only the basic ones are implemented: (i) authentication, the identity is proved
by the knowledge of a secret (e.g. password) or a physical unique property (e.g.
fingerprint, retina, voice); (ii) authorisation: user actions on the system are
constrained by its role.

However, applications flaws typically cause these methods not to be sufficient
alone [16]. For instance, in operating systems there is a need to use additional
software such as firewalls, antivirus and many other specific tools that must be
configured and kept updated to prevent unplanned attacks. Furthermore autho-
risation policies cannot account for all possible sequences of actions: a specific
sequence might exhibit unexpected side-effects. In particular, it is in general too
expensive and impractical (or even unfeasible) to intercept all emergent harmful
paths at design-time.

As a consequence, automated tools are a very useful support for the detection
of malicious behaviour. In this direction, many efforts have already been spent
in developing IDSs. An IDS tries to detect abnormal behaviour and misuse of a
target software system by observing it and deciding wether actions performed by
a user/agent are symptomatic of an attack [17]. Efficiency of an IDS is evaluated
by three parameters: accuracy (rate of false-alarms), performance (rate of audit
processing), and completeness (rate of missed detection).

Usually IDSs are implemented as expert systems: they synthesise signatures
of malicious behaviours from lists of sequences of actions. However, for gener-
ality, we do not focus here on specific techniques to handle signatures, for they
mostly concern the IDS research community, and are typically very dependent
on the application domain—they differ e.g. in the context of system calls [16, 12],
TCP/IP connection addresses [18], memory accesses, and so on. Rather, we are
concerned about the neat impact of such techniques, expressed in a stochastic
manner, and how they can influence the design of a protection system.

2.2 Human Immune System Overview

The human immune system protects the body against foreign pathogens. We use
the term antigen to refer to any foreign molecule that triggers an immune response
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by the human body. The human immune system consists of many layers each ex-
ploiting several mechanisms to increase the degree of protection. A first kind of
protection is provided by the physiological barriers, i.e. skin, temperature and pH,
that are reactive and non-specific—i.e. not triggered by a specific class of antigens.

The human immune system also provides active mechanisms: the innate and
the acquired immune system. The first is there since birth, and is composed of
scavenger cells (e.g. fagi) wandering in the lymphatic system, which are able
to detect and kill only a fixed subset of antigens. It is not adaptive, hence it is
not able to protect the body from new kinds of antigens. This issue is instead
the main concern of the acquired immune system: it improves during individual
life, learning and memorising new antigens. The acquired immune system is
composed of different types of cells: we consider only lymphocytes for they are
responsible for the main form of immunity.

Lymphocytes are produced in the bone marrow and are sent to mature in the
thymus. There, they are exposed to self-cells (body): if they bind the self-cells
lymphocytes are eliminated. When the process of maturation ends, lymphocytes
are released in the lymphatic systems. Lymphocyte surface is covered with dif-
ferent sets of receptors that are able to bind to different classes of antigens. This
phenomenon, called dynamic coverage, lets the immune system cover part of
the space of antigens (1016) with a sensibly smaller set of lymphocytes (1010).
Receptors are randomly generated by a process of variation and selection. Lym-
phocytes have a short life (about two days), but if during this period they bind to
several antigens they become “memory” and their life is extended. This strategy,
in combination with receptor generation process, allows to discover new antigens
and to apply a faster response if the antigen is met again.

2.3 A General Architecture for MAS Applications

In this section we describe a general architecture for MASs based on the TuCSoN
coordination infrastructure [13], showing an approach to ensure security applying
principles of the immune system—for space reasons we only sketch main design
details.

We consider a system that provides agents with services encoded in terms
of coordination artifacts, i.e. runtime abstractions encapsulating and providing a
coordination service, to be exploited by agents in social contexts expressed by co-
ordination rules and norms [14]. The basic model of coordination artifacts is char-
acterized by (i) a usage interface, (ii) a set of operating instructions, and (iii) a
coordination behaviour specification, which can be exploited by cognitive agents
to rationally use a coordination artifact.

Accesses of agents to these resources is restricted by an authentication proce-
dure. When an agent enters the system an authorisation policy limits its actions
allowing the exploitation of a limited set of services and resources—e.g. those
it has payed for. This is realised by the notion of Agent Coordination Context
(ACC) [19, 15]. An ACC works as agent interface towards the environment: it is
like a control room providing e.g. buttons and displays to an human, which are
the only means by which he/she can interact with the environment. Thus, the
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Fig. 1. A general architecture for a multi-agent system

ACC enables and rules the interaction between the agent and the environment
[19], and it is then able to model security and organisation aspects in MASs
[15]. In particular, the ACC is the right place to put authorisation policies, typ-
ically specified using a Role Based Access Control model (RBAC). The whole
architecture is depicted in Figure 1.

Usually the two mechanisms of authentication and authorisation are consid-
ered to guarantee a sufficient degree of protection. However, as described in
previous section, we instead promote the idea that a dynamic system is better
protected by additional dynamic mechanisms. So we introduce other techniques
inspired by the immune system and previous work on IDSs [16, 20].

As the human immune system has barriers, we consider authentication and au-
thorisation procedures to be information systems barriers. We need an extra layer
to cope with dynamic issues concerning harmful sequences of actions which cannot
be statically identified as such. So we add a layer inspired by the acquired immune
system of humans. Forrest et al. suggested a list of organising principles that should
guide the design of a computer security system: distributability, multi-layering, no
(totally) secure layer, diversity, disposability, autonomy, adaptability, and identity
via behaviour—see [16] for more details on them.

We introduce a class of (distributed) agents, which we call agentLy, to model
lymphocyte task: they should observe the actions performed by agents (auton-
omy) as reified by the ACC in charge of control them. When they detect a
suspicious behaviour (identity via behaviour) they should dispatch an alert mes-
sage to the authority that can trigger the proper response. In our case, this
authority could invalidate the agent ACC, i.e. denying any further access to the
system resources. Each agentLy is able to detect only a subset of the possible bad
behaviours (diversity). If after a time interval it does not detect any attack then
it can be replaced by another one (disposability). The security layer dynamically
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covers the space of possible bad behaviours. The system should be able to learn
and synthesise new signatures of abnormal behaviour (adaptability). As already
stated we do not deal with synthesising these signature, but we encapsulate these
skills in our agentLys and then abstract away from their details.

Now that we have sketched the system architecture and pointed out which
properties could be useful, we are interested in predicting the behaviour of the
system in large-scale scenarios, and the performance factors we should expect.
We try to answer these questions in the following sections.

3 Simulations in π-Calculus

In this section we briefly introduce π-calculus [6] and its stochastic extension
[9]. Then, we present an example of a simple program using the Stochastic Pi
Machine (SpiM) [10].

3.1 The π-Calculus

The π-calculus is a formal model developed to reason about concurrency [6]:
it is a language for describing and analysing systems consisting of agents (or
processes) which interact with each other, and whose configuration of neighbor-
hood is continually changing [21]. The basic entity is a name, which is used as
an unstructured reference to a synchronous channel where messages can be sent
and received. In its simpler version, a process is built from names according to
the syntax:

P ::= 0 |
∑

iεI

πi.Pi | (P |Q) | !P | (νx)P (1)

0 is the empty process. The summation
∑

iεI πi.Pi means that an agent might per-
form any prefix action πi, and correspondingly continues as Pi behaviour: prefix
forms πi are of the kind ȳx (send the name x at channel y), y(x) (wait for a name at
channel y and rename it as x), and τ (perform a silent action). A composition P |Q
represents P and Q executed in interleaved concurrency. A replication !P means
that (infinitely) many copies of P can be executed concurrently (like P |P |....). Re-
striction (νx)P creates the new name x and bounds its use in P .

The version of π-calculus that allows to send/receive a single name only
to/from a channel is called monadic. The polyadic version of the π-calculus
also allows more names in a single communication to be sent/received [21]. The
semantics of π-calculus can be described by a transition system, where the tran-
sition relation P −→ P ′—process P moving to P ′ by the occurrence of an inner
interaction—is defined by operational rules [6].

3.2 On Stochastic Models

In general, each formal model whose semantics is given by a transition system can
be extended to a stochastic version, resorting to the idea of Markov transition sys-
tem [22]. There, each transition P

r−→ P ′ is labelled with a rate r, a nonnegative
real value that scales how the transition probability between P and P ′ increases
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with time. Stochastic models allow for quantitative simulations, for rates can be
used to express aspects such as probability, speed, delays, and so on.

However, from an engineering perspective the choice of which language is used
for describing processes is a crucial one, for the system to be simulated is to be
effectively represented in the language.

Three basic options are available: (i) automata, like finite-state ones, where
the system is described by state-changes and by supporting data-structures (such
as stacks); (ii) nets, like Petri Net, where the system is described by a marking
of tokens spread over a graph; and finally (iii) process algebras, like π-calculus,
where the system is described by a composition of interacting entities. We find
the third approach to be the best suited for describing quantitative aspects
of complex MASs—such as self-organising ones. On the one hand, differently
from automata, process algebras allow to express concurrent activities (agents
in this case). On the other hand, differently from nets, process algebras allow
for full compositionality: this property is particularly relevant, as it allows to
express agents (and artifacts) with different roles separately, and then simply
reuse such definitions to express the whole system model by composition (parallel
composition, summation and replication).

3.3 Stochastic π-Calculus and π-Machine

Priami introduced a stochastic extension to π-calculus [9]. Each channel name
is associated with an activity rate r: the delay of an interaction through that
channel (representing the use of a resource [9]) is then a random variable with an
exponential distribution defined by r. Exponential distributions are used because
they enjoy the memoryless property, i.e. each transition is independent from the
previous one [23]. Given a channel name x, the probability pi of a transition
P

ri−→ Pi representing an interaction through x is the ratio between its rate ri

and the sum of rates of the n transitions through x enabled by P:

pi =
ri∑

j=1..n rj
, 1 ≤ i ≤ n . (2)

We consider the SpiM implementation for the stochastic π-calculus interpreter
[10]. As an example, we want to simulate a simple scenario where agents can
enter and leave a system after being authenticated and authorised. The system
parameters are (i) the number of agents within the system at t = 0, (ii) the
“concentration” of malicious vs. legitimate agents, (iii) the rates at which legit-
imate agents enter and leave the system, and (iv) the rates at which malicious
agents enter and leave the system.

We are simulating the system for 1000 time units. We want to keep the average
number of agents constant so that the entering rate is equal to the leaving one.
Code and simulation results are reported in Figure 2 and 3.

The initial part of the specification introduces channel names—we set e.g.
the small rate 0.1 for agents entering and leaving the system (delayEnter and
delayLeave), and a 70% ratio of legitimate (good) agents vs. malicious (bad)
ones (isGoodEA and isBadEA). In the behavioural part, we instantiate 1000
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1000.0 (* Simulation duration *)

(* Counters *)
new CountBad:1000000.0:<> new CountGood:1000000.0:<>
new isBadEA:300000.0:<> new isGoodEA:700000.0:<>
new delayLeaveG:0.1:<> new delayLeaveB:0.1:<>
new delayEnterG:0.1:<> new delayEnterB:0.1:<>
new EA:<> (* Agent*)
new BEA:<> (* Malicious Agent*) new GEA:<> (* Legitimate Agent *)
new ActionLeaveG:<> new ActionLeaveB:<>
new ActionEnterG:<> new ActionEnterB:<>
new LB:<> (* Signal: malicious agent must leave *)
new LG:<> (* Signal: legitimate agent must leave *)
new InitEA:<int> (* Initialize agents *)
new Timer:<<>,<>>

(* Behaviour *)
( !GEA(); LG()
| !BEA(); LB()

(* Manage the flow of agents (in/out the system) *)
(* 4 timers:

- legitimate agents entering and leaving
- malicious agents entering and leaving *)

| Timer<ActionEnterG, delayEnterG>
| !ActionEnterG(); (CountGood<> | GEA<> | Timer<ActionEnterG, delayEnterG>)
| Timer<ActionEnterB, delayEnterB>
| !ActionEnterB(); (CountBad<> | BEA<> | Timer<ActionEnterB, delayEnterB>)
| Timer<ActionLeaveG, delayLeaveG>
| !ActionLeaveG(); (CountGood() | LG<> | Timer<ActionLeaveG, delayLeaveG>)
| Timer<ActionLeaveB, delayLeaveB>
| !ActionLeaveB(); (CountBad() | LB<> | Timer<ActionLeaveB, delayLeaveB>)

(* Initialize Lymphocytes, Good and Bad agents (t=0) *)
| !EA(); (isBadEA<>; (CountBad<> | BEA<> ) + isGoodEA<>; (CountGood<> | GEA<>))
| !isBadEA()
| !isGoodEA()
| !InitEA(n); if n>0 then ( EA<> | InitEA<n-1> )
| InitEA<1000>

(* Library *)
| !Timer(c,r); (r<>|r();c<> )
)

Fig. 2. Source code of the model of a simple system where malicious and legitimate
agents can enter and leave

agents (InitEA<1000>) and then counted the number the evolution of legitimate
and malicious agents (CoundGood and CountBad), which are those shown in the
plot2. This example is used as basis for developing interesting dynamics in more
complex cases, as developed in the following.

4 Simulating Self-organising Systems

In this section we discuss three scenarios, exemplifying an incremental design
process for our IDS. We refer to the general architecture described in section 2.3
(figure 1). For space reasons the complete simulation code for these examples is
not reported3.
2 The whole description of this code is avoided for brevity.
3 The interested reader candownload them fromthe site: http://www.alice.unibo.it/
download/spim/esoa.zip



On the Role of Simulations in Engineering Self-organising MAS 161

 0

 100

 200

 300

 400

 500

 600

 700

 0  200  400  600  800  1000  1200

n
u

m
b

. 
o

f 
a

g
e

n
ts

 

time

legitimate malicious

Fig. 3. Simulation of the system in Figure 2

4.1 Scenario 1

Starting from the previous example we add to the system lymphocyte agents
(agentLy), which observe the behaviour of external agents. Its role, already de-
scribed in Section 2.3, is to monitor ACC states to detect wrong behaviours.
Each agentLy performs independently from the others, but they all share the
same parameters. We add to the previous list the following parameters

– the number of agentLys (10)
– the rate at which an agentLy performs inspections (delayInspection:0.5)
– the probability that an agentLy, during inspection, detects an agent as ma-

licious (10%, due to matchP:100000.0 and matchN:900000.0).

The first and second parameter should be dynamically adjusted: for instance if the
system is under attack it can raise its defenses. We consider them as a constant for
the duration of the simulation. The third parameter instead should be regarded as
a contract between the agentLy and the system. The system can replace agentLys
that do not comply with the contract. This can be e.g. realised by making agentLys
have their own ACC, and the infrastructure checking their detection rate.

The chart in Figure 4 shows the results of the simulation. With the chosen
values for the parameters, we observe that the system is able to eliminate the
activity of malicious agents within around 400 time units.

4.2 Scenario 2

In this scenario we introduce the idea that agentLys feature a limited lifetime.
Furthermore we want to model two classes of agentLys which have different
abilities to detect malicious activity. We call the ones which perform better
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Fig. 4. A simulation of a simple system where malicious and legitimate agents can
enter and leave. AgentLys limit the activity of malicious agents.

agentLyA, while the other ones agentLyB. Because an agentLyA performs better
it will be rewarded with a longer lifetime, modelling the memory effect. So we
add the following parameters:

– the probability that an agentLy belongs to class A rather than B (20% due
to isBadL:800000.0 and isGoodL:200000.0)

– the lifetime of the two classes of agentLys (GL<200> and BL<100>)
– the probability that an agentLyA, during inspection, detects an agent as

malicious (30% due to matchGP:300000.0 and matchGN:700000.0)
– the probability that an agentLyB, during inspection, detects an agent as

malicious (10% due to matchBP:100000.0 and matchBN:900000.0).

Figure 4 shows the results of the simulation. With the chosen values for the
parameters the system is able to limit the activity of malicious agents. As ex-
pected, this system performs better than the previous, for now malicious agents
are eliminated in less than 300 time units. Furthermore, by increasing the prob-
ability that an agentLy belongs to class A, we can expect the performance of
detection to increase accordingly.

4.3 Scenario 3

In this scenario we introduce the hypothesis that the types of malicious be-
haviours are not uniformly distributed in the space of possible behaviours. So an
agentLy that has a poor performance must learn from those who perform better.
To account for this phenomenon we modelled the possibility for the system to
clone an agentLyA to replace an agentLyB. This can be realised in our MAS by
imposing in an agentLy’s ACC contract that ineffective agentLys should accept



On the Role of Simulations in Engineering Self-organising MAS 163

 0

 100

 200

 300

 400

 500

 600

 700

 0  200  400  600  800  1000  1200

n
u

m
b

. 
o

f 
a

g
e

n
ts

 

time

malicious legitimate killed

Fig. 5. A simulation of a simple system where malicious and legitimate agents can
enter and leave. AgentLys limit the activity of malicious agents. An agentLyA perform
better and has a longer lifetime than an agentLyB.
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Fig. 7. A comparison in detection performance between the previous simulations

from the infrastructure upgrades on their behaviours—which the infrastructure
takes from effective ones.

Figure 6 shows the results of the simulation. With the chosen values for the
parameters the system is able to further limit the activity of malicious agents—
within still remains similar to the previous case.

4.4 Results Comparison

In Figure 7, we merged the previous charts to evaluate the increase of detection
performance. As we would expect there is an evident increase of performance
between the first and second scenario, while a minor increase occurs between the
second and the third. In general, while the third solution appears more promising,
the actual results are strictly dependent from the value of parameters, hence
more experiments are needed in order to evaluate whether the possible gains
worth the considerable infrastructural support required to simulate lymphocyte
learning. In fact, if the two classes of agents have a similar detection rate, the
third solution might add only overhead to the system.

5 Conclusion

In this paper we have started putting together the elements of a framework for
engineering self-organising applications: featuring MASs composed by agents and
artifacts [14, 15], and simulations in a stochastic process algebra settings to tune
system parameters at design-time. We used an intrusion detection system for
TuCSoN as a mere explanatory case—as more comprehensive ones have already
been explored (see e.g.[24, 12]).
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The system depicted being based on the TuCSoN coordination infrastructure,
it features the remarkable notion of ACCs, which enable to control agent ac-
tions, reify information on action sequences (to be read by the infrastructure
and/or other agents), prevent agent actions from a given point in time. For the
architecture and general principles we took inspiration from the human immune
system. For the methodology, we relied to formal simulation and modelling via
stochastic π-calculus, which—even though is a quite new language in the context
of the MAS community—showed its effectiveness as a design tool.

Whereas the experiments we realised are still preliminary, we believe they gen-
erally emphasise the ability of the proposed approach to help the MAS developer
to anticipate design decisions and strategies at the early stages of design—before
actually developing prototypes and testing them.

Our plan for future works includes exploiting our approach to devise an actual
implementation of intrusion detection systems on top of TuCSoN-based MASs.
Other than evaluating the actual strategy to implement (as well as its distinctive
parameters), we plan to explore the implications of extending such an approach
to a network of nodes. In this paper we have only been concerned with self-
organisation mechanisms: in future works we will explore the dynamics that
causes new phenomena and behaviours to emerge. For example the uniqueness of
the human immune system provide the human species with a greater probability
to survive to a specific antigen. This is an emergent property which could be very
important for distributed system. Integrating agent cognition and stochastic
simulation models is a longer-term research direction as well.
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