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Abstract

The intrinsic complexity of self-organising
MASs (multi-agent systems) makes it diffi-
cult to predict global system evolutions at
early stages of the design process. Simulat-
ing high-level models to analyse properties
of a MAS design can anticipate detection of
incorrect / wrong design choices, and allow
tuning of system parameters.
In this paper, we take abnormal-behaviour
detection as a case study, and devise an
artifact-based MAS architecture inspired by
principles of the human immune systems.
We use stochastic π-calculus to specify
and run quantitative large-scale simulations,
which allow us to verify the basic applicabil-
ity of our IDS (intrusion detection system)
and possibly obtain a preliminary set of its
main working parameters.

1 Introduction

The trend in today information systems engineering is
toward an increasing degree of complexity and open-
ness, leading to rapidly-changing requirements and
highly-dynamic environments. Furthermore, the in-
creasing costs of systems engineering [Horn, 2001] call
for new engineering methodologies and tools. In that
sense social and natural sciences are recognised as rich
sources of inspiration: for instance, the Autonomic
Computing initiative tries to face complexity by ap-
plying self-regulating mechanisms typical of biological
processes [Kephart and Chess, 2003].

Self-organisation is a promising theoretical frame-
work to reduce complexity of systems engineering. A
system is said to be self-organising if it is able to re-
organise itself upon environmental changes, by local
interaction of its parts without any explicit pressure
from the outside [Heylighen, 2003]. A system built
according to this principle is usually able to perform
complex tasks even though its components are far sim-
pler when compared to a monolithic solution.
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In this paper we elaborate along the line developed
in [Gardelli et al., 2005b; 2005a] by exploring method-
ological aspects of the engineering of self-organising
MASs. Because of the complexity inherent in such
systems, as well as the difficulties in predicting their
behaviour and properties, we find it crucial to exploit
formal tools for simulating systems dynamics at the
early stages of design, in order to (i) nurture evolving
ideas and design choices, and (ii) to provide better
foundation for the feasibility of the system. In the de-
ployment stage, the models devised can then provide
suitable parameters for (iii) tuning the system.

Among the various formal models to specify quan-
titative aspects of MASs we promote the use of the
stochastic π-calculus process algebra [Milner et al.,
1992; Priami, 1995]. Process algebras have already
been successfully applied to several domains [Baeten,
1990]: now their value is even more recognised in
fields like security [Abadi and Gordon, 1997], perfor-
mance analysis [Gilmore and Hillston, 1994], social
insects [Tofts, 1992], molecular biology [Regev et al.,
2001], but still almost unexplored in the context of
self-organising and autonomic systems engineering.

In this paper we show that the π-calculus process
algebra can be fruitfully applied in particular to the
engineering of multi-agent systems (MASs): in partic-
ular we will show how to track the dynamics of global
system properties via stochastic simulations, and de-
termining suitable system parameters.

In this paper, we apply these ideas to the study
of an intrusion detection (ID) infrastructure for open
MASs: the focus is on detecting anomalies in agents
behaviour drawing inspiration from principles of the
human immune system [Forrest et al., 1997]. The in-
frastructure we devise is based on the TuCSoN tech-
nology [Omicini and Zambonelli, 1999]1. This allows
us to structure a MAS not only in terms of agents, but
also with tuple centres [Omicini and Denti, 2001] as
coordination artifacts [Omicini et al., 2004] and agent
coordination contexts (ACC) [Omicini, 2002]. Coor-
dination artifacts are used to model resources in the
environment on which agents act upon. ACCs spec-
ify and enact the access policies which each agent is
subject to, and can be used to both (i) reify relevant
information about the agent/artifacts interaction, and

1http://tucson.sourceforge.net



(ii) to deny malicious agents access to the resources
available in the environment.

To evaluate the impact of different design choices
and parameters of the ID infrastructure—such as in-
spection/detection rates, number of inspectors, and
the like—we simulate the system behaviour in dif-
ferent scenarios using SPiM specifications. SPiM—
Stochastic Pi Machine—is a simulator that is able to
execute systems specifications written in stochastic π-
calculus and track the quantitative system dynamics
[Phillips, 2005].

The rest of the article is structured as follows. In
Section 2 we briefly highlight the subject of ID and
related mechanisms in the human immune system. In
Section 3 we describe our reference architecture for a
MAS based on TuCSoN, and show how to develop an
anomaly detection application based on artifacts. Sec-
tion 4 motivates the use of π-calculus and its stochas-
tic extension. Then Section 5 discusses simulations
related to our case study, along with some meaning-
ful experimental results. Finally, Section 6 concludes
with final remarks, and with some hints on the main
directions for our future research.

2 Intrusion Detection and the Human
Immune System

There are several mechanisms used to protect infor-
mation systems, but usually only the basic ones are
implemented: (i) authentication—identity is proved
by the knowledge of a secret (e.g. password) or a phys-
ical unique property (e.g. fingerprint, retina, voice);
(ii) authorisation—user actions on the system are con-
strained by its role and the policy linked to that role.

However, application flaws typically cause these
methods alone not to be sufficient [Forrest et al.,
1997]. Furthermore, authorisation policies cannot ac-
count for all possible sequences of actions, and a spe-
cific sequence might exhibit unexpected side-effects: it
is in general too expensive and impractical—or even
unfeasible—to intercept all emergent harmful paths at
design-time.

Hence, automated tools are essential to enable run-
time detection of malicious behaviours: in this direc-
tion, many efforts have already been spent in devel-
oping IDSs. An IDS tries to detect intruders and mis-
use of a target software system by observing users
behaviour and deciding whether actions performed
are symptomatic of an attack. Misuse-based IDSs
try to detect intruders matching the actual user be-
haviour with known signatures of malicious behaviour.
Anomaly-based IDSs try to detect behaviours that are
different from what it is considered to be the normal
activity. Both approaches have been inspired by the
inner mechanisms of the human immune system [For-
rest et al., 1997; Somayaji et al., 1997], and are widely
explored in the literature. In this paper, we draw use-
ful principles from the human immune system and ap-
ply them at the architectural level, while relying on
previous work by IDS community for the algorithmic
aspects.

In our case study we consider three main features:

independent layers, distribution and adaptivity. In or-
der to achieve better protection we design our security
system as made of independent layers:
• static non-specific mechanisms—like the skin of

animals—are implemented through authentica-
tion;

• static specific mechanisms are typically realised
by authorisation policies;

• dynamical issues are the main concern of anomaly
and misuse detection, and resembles the human
acquired immune system.

Responsibilities of our security system should be dis-
tributed across several entities—like lymphocytes in
acquired immune system—in order to avoid the single-
point-of-failure problem. The dynamic layer should
raise its defences if under attack while releasing com-
putational resources when not needed, i.e., adaptively :
this point in particular is the main subject of investi-
gation of this article. We follow the “self-organisation”
approach, i.e., designing a strategy based on sim-
ple rules exploiting coupled positive/negative feedback
loops. We investigate stochastic π-calculus models
of several strategies, and run simulations for several
parameters values using the Stochastic Pi-Machine
(SPiM) [Phillips, 2005].

3 Security in MAS

In this section we describe our reference architecture
for MASs based on the TuCSoN coordination infras-
tructure [Omicini and Zambonelli, 1999], showing how
this fits an anomaly detection layer.

We consider a system that provides agents with
services encoded in terms of coordination artifacts,
i.e., runtime abstractions encapsulating and provid-
ing a coordination service, to be exploited by agents
in social contexts expressed by coordination rules and
norms [Omicini et al., 2004]. Following the general
model of artifact [Viroli et al., 2005], a coordination
artifact could be characterised by a usage interface, a
set of operating instructions, and a coordination be-
haviour specification, which can be exploited ratio-
nally by cognitive agents.

Accesses of agents to these resources is restricted by
an authentication procedure. When an agent enters
the system an authorisation policy limits its actions al-
lowing the exploitation of a limited set of services and
resources—e.g. those it has payed for. An agent acts
upon the environment via a run-time structure, the
ACC, which enables and rules the interaction between
the agent and the environment [Omicini, 2002]— so
the ACC is the right place where to embed authori-
sation policies. The whole architecture is depicted in
Figure 1.

Even if the two mechanisms of authentication and
authorisation are considered to guarantee a reason-
able degree of protection, we promote the idea—as
pointed out in the ID community—that a system is
better protected by additional dynamic mechanisms.
Correspondingly, we introduce a layer aimed at de-
tecting anomalies in agents behaviour inspired by the



Figure 1: In our reference architecture of MASs, en-
vironments are populated by artifacts and agents.

Figure 2: Comparison between the average behaviour
of agents and individual one as the basis for anomaly
detection: possible actions are grouped into classes.

immune system as well as by previous works on IDSs
[Forrest et al., 1997; Somayaji et al., 1997].

We consider agents willing to exploit a specific ar-
tifact: an artifact provides a finite set of services, but
we can group them into classes. For the sake of sim-
plicity we consider only five classes from A to E. If
we trace the agents behaviour “for a while” then we
are able to create an average distribution of actions
over that resource: that distribution is taken as the
“normal way” for agents to interact with a particu-
lar artifact (Figure 2 left). Note that this approach is
valid under two hypotheses:

1. the number of traces is such that the data is sta-
tistically significant;

2. the percentage of agents exhibiting abnormal be-
haviour is sufficiently low during the initial ob-
servation stage.

From now on it is possible to observe an individual
agent in order to build its particular distribution of
actions: the deviation from the average distribution
might be a symptom of intrusion or abnormal activ-
ity. For instance, if an action belonging to class C
is critical then agent X (Figure 2 right) should be
inspected to decide whether it is acting properly or
might cause problems. Note that there exist better
approaches than the one above described: indeed for
us it is just a case to investigate a methodology based
on formal languages and simulation.

Referring to the previous section we describe now

how the security layer fits into the general architec-
ture. Basically we need three artifacts, (i) for pro-
viding the service, (ii) for logging purpose and (iii)
to report abnormal activity. Due to space constraints
we cannot provide the details on how to program the
various artifacts to achieve the various behaviours: in-
terested readers can refer to [Gardelli et al., 2005a] for
an overview, or download the whole source code.2

We consider two classes of agents: the ones that re-
quest services and the ones that perform inspection.
The main role of an inspector is to compare the aver-
age signature with the individual ones and report any
anomaly: the inspection for obvious reasons cannot
be performed over all the agents but it will be done
through sampling. We can consider two parameters
related to an inspector: (i) the rate of inspection and
(ii) the number of inspectors active simultaneously.
Note that it is functionally equivalent to have one in-
spector working at rate krinsp or k inspectors working
at rate rinsp: as previously stated distributed entities
let us avoid the single-point-of-failure problem.

In the remainder of this paper we will briefly in-
troduce the π-calculus process algebra and show how
it can be fruitfully applied to this case so as to pre-
dict the global behaviour of the system and choose a
strategy for managing the number of inspectors.

4 The π-Calculus

The π-calculus is a formal language developed to rea-
son about concurrency [Milner et al., 1992]. Initially,
it was intended for describing and analysing systems
consisting of agents (or processes) which interact with
each other. The basic entity is the name, which is used
as an unstructured reference to a synchronous chan-
nel where messages can be sent and received. The se-
mantics of π-calculus can be described by a transition
system, where the transition relation P −→ P ′ —a
process P moving to P ′ by the occurrence of an inner
interaction—is defined by operational rules [Milner et
al., 1992].

In general, each formal model whose semantics is
given by a transition system can be extended to a
stochastic version, resorting to the idea of Markov
transition system. There, each transition P

r−→ P ′

is labelled with a rate r, a non-negative real value
that describes how the transition probability between
P and P ′ increases with time.

Stochastic models allow for quantitative simula-
tions, for rates can be used to express aspects such as
probability, speed, delays, and so on. One of the no-
table stochastic extensions to the π-calculus was intro-
duced by Priami [Priami, 1995]. Each channel name is
associated with an activity rate r: the delay of an in-
teraction through that channel—representing the use
of a resource—is then a random variable with an ex-
ponential distribution defined by r. Given a channel
name x, the probability pi of a transition P

ri−→ Pi rep-
resenting an interaction through x is the ratio between

2The source code for the experiments, π-calculus
specifications and charts can be downloaded from
http://www.alice.unibo.it/download/spim/at2ai-5.zip.



its rate ri and the sum of rates of the n transitions
through x enabled by P:

pi =
ri∑

j=1..n rj
, 1 ≤ i ≤ n . (1)

Because of space constraints we are not going to de-
scribe here how to write stochastic π-calculus speci-
fications since it has already been widely covered by
the literature—see for instance [Milner et al., 1992;
Phillips and Cardelli, 2004]. In the next section we
discuss how to exploit stochastic π-calculus in order
to simulate the dynamics of the previously-described
anomaly detection system: we use the Stochastic pi
Machine (SPiM) [Phillips, 2005] in order to run sim-
ulations directly from the specifications.

5 Simulating the Dynamics of an
Anomaly Detection System

In this section we focus on the description of models
for anomaly detection systems, and on the analysis
of simulation results: interested readers can download
the specifications used to derive the simulations, along
with the coloured version of the plots.

The main objective here is to evaluate a number
of different strategies letting inspectors adapt to the
changing number of malicious agents: in other words,
we would like the system to self-regulate—raising its
defences when needed, otherwise releasing computa-
tional resources. For the sake of simplicity we consider
here neither missed detections nor false alarms: while
these are key evaluation parameters for detection al-
gorithms, the focus here is on the overall qualitative
MAS behaviour rather than on performances.

In the basic scenario, we consider an agent that per-
forms inspections at a fixed rate drawing randomly
an agent from the population: the initial population
of the system is made of 90 normally-behaving agents
and 10 abnormally-behaving ones. While the number
of normal agents remains constant, malicious ones en-
ter the system at an arbitrary rate: hence, if the rate of
inspection is 10.0 then statistically the rate of inspec-
tion of malicious agents is at least 1.0 and increases
as more malicious agents enter the environment.

Once this model is specified in stochastic π-calculus,
the dynamics of the system can be simulated by us-
ing SPiM: each simulation adopted a different3 arrival
rate for the malicious agents. From the chart in Fig-
ure 3 it is possible to observe—although it was easily
predictable—that an agents inspecting once about ev-
ery 10 time units is able to contain malicious agents
only in case the arrival rate is sufficiently low.

We now extend the basic model in order to change
the number of inspector agents according to the num-
ber of malicious agents, which is an unknown from the
viewpoint of inspectors. Drawing inspiration from the
human immune system and the well-known predator-
prey system, we introduce the ability of inspectors to

3For the sake of clarity, the charts included show data
only for a couple of the parameters values in order to high-
light the trends.

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300  400  500  600  700  800  900  1000

n
u

m
b

. 
o

f 
a

g
e

n
ts

 

time

rate 2.0
rate 5.0

rate 10.0

Figure 3: The population of malicious agents rapidly
grows by increasing the rate of arrivals. With a sin-
gle inspector, the system is able to contain malicious
agents only in the case that the rate of arrivals is com-
parable to the rate of inspections.
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Figure 4: The dynamic equilibrium showed in this
system is very similar to the one exhibited by a prey-
predator-like system. The size of the malicious pop-
ulation evolves periodically due to the adaptively-
changing inspectors population.

clone themselves. In particular the stimulus for the
cloning process is the anomaly-detection event: hence,
every time an inspector detects a malicious agent it
clones itself, while it dies if it inspects a normal agent.
The infrastructure takes care that there is at least an
inspector active. The anomaly-detection event trig-
gers a positive feedback on the number of inspectors,
while the death upon inspection of a normal agent pro-
vides the negative feedback necessary to stabilise the
population of both inspectors and malicious agents—
see chart in Figure 4. Chart in Figure 5 shows that
whatever the rate of arrivals of malicious agents, the
system always reaches a dynamic equilibrium. While
the strategy described above is somewhat effective, the
equilibrium achieved might not be suitable—i.e., the
average number of malicious agents may still be too
high.

So, we experiment with a new strategy, which is a
refinement of the previous one: we introduce a mem-
ory of previous attacks—a mechanism inspired by the
human immune system. To this end, we add the life-



Figure 5: Increasing the rate of arrivals of malicious
agents the population reach a dynamic equilibrium
which might however be unsuitable: this is achieved
using inspectors able to clone themselves.
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Figure 6: Adding the lifetime feature to inspectors re-
sults in a better equilibrium achieved: lifetime of in-
spectors is constant while the rate of arrivals increases.
Compare this chart with the one in Figure 5.

time property to inspectors: each time an agent per-
forms an inspection its lifetime is decreased, but if it
detects a malicious agent then its lifetime is extended.
In this sense the lifetime is measured in terms of num-
ber of inspections allowed. It is possible to notice from
the chart in Figure 6 that the equilibrium reached is
much more reasonable—i.e., the number of malicious
agents is lower—hence the system is able to limit the
activity of malicious agents. In particular, the chart in
Figure 7 makes the relation between inspectors’ life-
time and the system dynamic equilibrium mostly ev-
ident: as the lifetime value increases, the equilibrium
stabilises at lower values. Note that, given the target
quality-level, there is trade-off between lifetime value
and use of computational resources.

6 Conclusion and Future Works

One of the general aims of this research line is paving
the way toward an agent-oriented framework for en-
gineering self-organising applications. In [Gardelli et
al., 2005a] we initially focused on the applicability of
stochastic π-calculus and the related modelling pro-
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Figure 7: Holding constant the rate of arrivals of ma-
licious agents, it is possible to observe that the longer
the inspectors’ lifetime, the better the dynamic equi-
librium achieved. Lifetime is measured in terms of
number of inspections allowed.

cess. Here, instead, we gave more details on domain-
specific issues, i.e., to support anomaly detection for
MAS and targeting the simulations to the specific
case. This paper is largely based on [Gardelli et al.,
2005b], where we showed how to exploit π-calculus
specifications to quickly investigate the dynamics of
self-organising systems. Here, however, a clear exper-
imental evidence has been given to the emergence of
global system properties such as the dynamic equi-
librium achieved in prey-predator like systems, thus
providing more support for our claims.

According to our reference architecture a MAS is
populated both by agents and artifacts: the latter em-
bed resources or services to be exploited by agents.
The system depicted is based on the TuCSoN coor-
dination model, and has been prototyped upon the
TuCSoN infrastructure. For the architecture and gen-
eral principles we took inspiration from the human
immune system and previous works on IDSs. For
the methodology, we relied on simulations and mod-
elling via stochastic π-calculus, which—even though
is a quite new language in the context of the MAS
community—showed its effectiveness as a tool to in-
vestigate several design strategies.

While our experiments need to be further detailed,
we believe they generally emphasise the ability of the
proposed approach to help the MASs developers to
anticipate design decisions and strategies at the early
stages of design, before actually developing prototypes
and testing them.
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