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Abstract

Recent coordination languages and models are moving towards the application of techniques coming from
the research context of complex systems: adaptivity and self-organization are exploited in order to tackle
the openness, dynamism and unpredictability of today’s distributed systems. In this area, systems are
to be described using stochastic models, and simulation is a valuable tool both for analysis and design.
Accordingly, in this work we focused on modelling and simulating emergent properties of coordination
techniques.
We first develop a framework acting as a general-purpose engine for simulating stochastic transition systems,
built as a library for the Maude term rewriting system. We then evaluate this tool to a coordination problem
called collective sort, where autonomous agents move tuples across different tuple spaces according to local
criteria, and resulting in the emergence of the complete clustering property.
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1 Introduction

Several works studying timing, probability and stochasticity issues in foundational

calculi for interaction—e.g. [18,10,11]—have recently received increasing attention.

The long-term goal of these researches is to set up solid foundations for analysing

and modelling quantitative aspects of software systems. Not only this is useful to

address performance issues [11], as typically considered in last years, but it becomes

very also crucial when designing dynamic and open applications.

Systems that self-organise to unpredictable changes in their environment very

often need to feature adaptivity as an emergent property. As this observation was

1 Email: m.casadei@unibo.it
2 Email: luca.gardelli@unibo.it
3 Email: mirko.viroli@unibo.it

Electronic Notes in Theoretical Computer Science 175 (2007) 59–80

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.05.022

mailto:m.casadei@unibo.it
mailto:luca.gardelli@unibo.it
mailto:mirko.viroli@unibo.it
http://www.elsevier.com/locate/entcs


first made in the context of natural systems, it was shortly recognised as an inspiring

metaphor for artificial systems as well [3]. A main aspect of emergent properties,

however, is that by their very definition they cannot be achieved through a sys-

tematic design: their dynamics and outcomes cannot be fully predicted. Providing

some design support in this context is still possible. The whole system of interest,

that is the application and the environment, can be modelled as a stochastic sys-

tem, namely, a system whose dynamics and duration aspects are probabilistic. In

this scenario, simulations can be run and used as a fruitful tool to predict certain

aspects of the system behaviour, and to support a correct design before actually

implementing the application at hand [6].

This scenario is particularly interesting for coordination models and languages.

Some works like the TOTA middleware [12], SwarmLinda [13], and Stochastic

KLAIM [14], though starting from different perspectives, all develop on the idea

of extending standard coordination models with features related to adaptivity and

self-organization. They share e.g. the idea that tuples in a tuple space eventually

spread to other tuple spaces in a non-deterministic way, depending on timing and

probability. Accordingly, our goal is to analyse the potential role that simulation

tools can have in this context, towards the identification of some methodological

approach to system design.

Many simulation tools can be exploited to this end, though they all necessarily

force the designer to exploit a given specification language, and therefore better

apply to certain scenarios and not to others—examples are SPIM [16], SWARM

[2] and REPAST [1]. Instead of relying on one of them, we sought for a general-

purpose approach. We evaluate the applicability of the Maude specification tool as

a general-purpose engine for running simulations [4]. Maude allows for modelling

syntactic and dynamic aspects of a system in a quite flexible way, supporting e.g.

process algebraic, automata, and net-like specifications—all of which can be seen

as instantiations of Maude’s term rewriting framework. Hence, we developed a

library for allowing a system designer to specify in a custom way a system model in

terms of a stochastic transition system—a labelled transition system where actions

are associated to a rate (of occurrence). One such specification is then exploited by

the tool to perform simulations of the system behaviour, thus making it possible to

observe the emergence of certain (possibly unexpected) properties.

This framework is tested on an application to a tuple space scenario called collec-

tive sort, which is a generalization of the problem known in the swarm intelligence

community as brood sort [3]. This application features autonomous agents man-

aging a set of distributed tuple spaces, with the goal of moving tuples from one

space to the other until completely “sorting” them, that is, (i) tuples of the same

type are collected in the same tuple space, and (ii) tuples of different kinds tend

to reside in different tuple spaces. We evaluate a solution to this problem based

on a fully-distributed algorithm, where each agent moves tuples according to local

criteria, and where sorting appears to emerge from initial chaotic configurations.

The remainder of this paper is as follows: Section 2 provides some background on

coordination techniques for adaptivity and formal frameworks for stochastic mod-
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elling, Section 3 presents our library for simulation of stochastic systems in Maude,

Section 4 describes the collective sort case and its simulation results, and finally Sec-

tion 5 concludes providing perspectives on future works.

2 Background

2.1 Complex Systems and Coordination

In the effort to improve the design process of software systems—i.e. to bridge

the gap between design and implementation—it has become very common practice

to take into account not only functional and architectural requirements, but also

quantitative aspects like temporal and probabilistic ones. When dealing with com-

plex systems, it is often the case that aleatory in system dynamics may cause the

emergence of interesting properties, that cannot therefore be abstracted away when

designing the system. The field of coordination models and languages is witnessing

the development of a number of works moving to this direction, most of which are

inspired by natural phenomena.

A first example is the TOTA (Tuples On The Air) middleware [12] for pervasive

computing applications, inspired by the concept of field in physics—like e.g. the

gravitational or magnetic fields. This middleware supports the concept of “spatially

distributed tuple”: that is, a tuple can be cloned and spread to the tuple spaces in

the neighborhood, creating a sort of computational field, which grows when initially

pumped and then eventually fades. To this end, when injected in a tuple space,

each tuple can be equipped by some application-dependent rules, defining how it

should spread across the network, how the content of the tuple should be accordingly

affected, and so on. TOTA is mainly targeted to support multiagent systems whose

environment is open, dynamic and unpredictable, like e.g. to let mobile agents meet

each other in a dynamic network.

Another example architecture is the SwarmLinda coordination model [13], which

though similar to TOTA is more inspired by swarm intelligence and stigmergy

[3,8,9]. In SwarmLinda, ant-like algorithms are used to retrieve tuples in the dis-

tributed system. The use of self- techniques in SwarmLinda derives from necessity

of achieving adaptivity when dealing with openness and with the unpredictability

of user interactions.

Finally, the “swarm robotics” field applies strategies inspired by social insects in

order to coordinate the activities of a multiplicity of robots systems. Typically, these

systems are built on top of ad-hoc software middlewares [3], and solve problems with

distributed-algorithms where, though each robot brings about very simple goals, the

whole system can be used to solve quite complex problems—e.g. collecting items

on the ground.

These are all examples witnessing the fact that coordination in open, dynamic,

and unpredictable systems have quantitative aspects playing a very important role.

This calls for analysis and design tools that can support system development at

various levels, from formal specification up to simulations.
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2.2 Formal Tools for Specifying Stochastic Aspects

In particular, following the work on foundational calculi for interaction, we identify

the stochastic dimension as a crucial one in system modelling [18]. A stochastic

system is a system where the evolution in time is aleatory. On the one hand, this

can be used to abstract away from implementation specific issues, by just stating

that a process will take some time to execute. On the other hand, advancement in

time is tracked, and its variability is accounted for, by considering the execution time

as an aleatory variable distributed according to a specific distribution of probability.

A first example of work studying the issue of stochastic modelling is the study

of stochastic π-Calculus by Priami in [18]. In that model, each communication

channel is associated to a rate: the duration of an interaction through a channel

is an aleatory variable distributed according to an exponential distribution defined

by that rate. Accordingly, the semantics of non-deterministic choice changes, for

the probability of an action is a function of the rates of the involved channels.

For this language, the SPiM tool has been introduced to run simulations using

the Gillespie algorithm [16,17,7]—the basic algorithm for running simulations of

chemical reactions. This tool has been developed mainly to explore the dynamics

of biochemical systems [17], though it can be applied to software systems as well

[6].

In the context of coordination, Klaim (Kernel Language for Agents Interaction

and Mobility) [14] is a language introduced for modelling and programming dis-

tributed systems made of components asynchronously interacting via tuple spaces—

thus extending Linda. Klaim is similar in philosophy to the π-Calculus, the main

exception is that processes communicate in an asynchronous manner, via the inser-

tion and removal of tuples in tuple spaces. Particularly interesting is the stochastic

extension of Klaim, called StocKlaim, which basically follows the same approach

of the Priami’s extension of π-Calculus. The semantics of StocKlaim is given by a

labelled transition system which is translated into a continuous-time Markov chain:

this translation is performed to allow for quantitative analysis and model-checking

[14]. A probabilistic extension to Klaim exists as well, called pKlaim [5], which

replaces non-determinism with explicit probabilities, and where time is discrete.

As many other examples of stochastic process algebras exist, we are here inter-

ested in finding a general framework, one at the meta-level which does not promote

a specific language but allows for a great deal of flexibility in the specification of

syntactic and semantic aspects. The Maude meta-programming language appears

quite promising to this end. Maude is a high-performance reflective language sup-

porting both equational and rewriting logic specifications, for specifying a wide

range of applications [4]. The basic brick of a Maude program is the module, which

is essentially a set of definitions determining an algebra: the modules can be either of

the functional or system kind. Functional modules contain both (syntax-customed)

type and operation declarations, along with equations which are actually equational

rewriting rules defining abstract data types—this is hence useful to declare algorith-

mic aspects of computing systems. System modules can instead have rewriting laws

as well—i.e. transition rules—that are typically used to implement a concurrent
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rewriting semantics, and are then able to deal with aspects related to interaction

and system evolution.

In the course of finding a general simulation tool for stochastic systems, we con-

sidered Maude a particularly appealing framework, for it allows to directly model

a system in terms of transition rules, or to prototype a new domain-dependent

language to have more expressiveness and compact specifications. This is there-

fore a natural starting point for addressing the simulation of stochastic aspects in

coordination: other languages require the designer to model systems in terms of

off-the-shelf abstractions—e.g. channels and processes in π-Calculus—which might

not be suitable in the general case. Furthermore, Maude provides tools for per-

forming the analysis of systems properties, including theorem proving and model

checking—which opens interesting future works in this research.

3 A Stochastic Simulation Framework in Maude

In this section we describe a basic and general simulation framework for stochastic

systems implemented as a Maude library. For the sake of brevity, we shall neglect

a full description of Maude—the interested reader can refer to the official Maude

documentation [4]—though some of its main aspects are presented throughout.

The idea of our library is to model a stochastic system by a labelled transition

system where transitions are of the kind S
r:a
−−→ S′, meaning that the system in

state S can move to state S′ by action a, where r is the (global) rate of action a in

state S. The rate of an action in a given state can be understood as the number

of times action a could occur in a time-unit (if the system would rest in state S),

namely, its occurrence frequency. This idea is inspired by the activity mechanism

of stochastic π-Calculus [18], where each channel is given a fixed local rate, and

the global rate of an interaction is computed as the channel rate multiplied by the

number of processes willing to send a message and the number of processes willing to

receive a message. Our model is hence a generalization of this approach, for the way

the global rate is computed is custom, and ultimately depends on the application

at hand—e.g. the global rate can be fixed, or can depend on the number of system

sub-processes willing to execute an action. Given a transition system of this kind

and an initial state, a simulation is simply executed by: (i) checking each time

the available actions and their rate; (ii) picking one of them probabilistically (the

higher the rate, the more likely the action occurs); (iii) accordingly changing the

system state; and finally (iv) advancing the time counter following an exponential

distribution, so that the average frequency is the sum of the action rates. This

technique is again a generalization of the one adopted in SPiM [16].

The framework implementation is organized in five Maude modules: (i)

STOCHASTIC-SELECTION contains the definition of the functions handling prob-

abilities and randomness; (ii) STANDARD-CARRIER provides all the definitions a

specific system has to implement in order to be simulated by this tool; (iii)

STOCHASTIC-TRACES-TYPES contains the definition of the data structures of the

stochastic engine; (iv) STOCHASTIC-TRACES-FUNCTIONS provides the definition
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mod STOCHASTIC-SELECTION is
pr COUNTER .
pr RANDOM .
pr CONVERSION .
pr LIST{Float} .

sort Event .
op @ : [Nat] [Float] -> Event [ctor] .
op next : List{Float} -> Event .

*** Inner definitions and implementation
...
op $rand : -> [Float] .
eq $rand = float(random(counter)/ 4294967295) .
...

endm

Fig. 1. Definitions in the STOCHASTIC-SELECTION module.

of some essential functions for implementing the stochastic engine; and (v)

STOCHASTIC-TRACES-ENGINE contains the actual definition of the stochastic engine.

Each module is briefly described in turn.

3.1 STOCHASTIC-SELECTION module

As shown in Figure 1, the STOCHASTIC-SELECTION module starts with clauses to

import definitions from other system modules, namely COUNTER for using an incre-

mental counter, RANDOM for generating random numbers, CONVERSION to convert

integers to floats, and finally List{Float} for handling lists of floats.

A sort (i.e. a “type”) Event is defined, along with a “@” constructor operator

for generating its values ([ctor]). The idea is that a term @(N,F) represents a

simulation event, caused by the action expressed by natural number N, and where

float number F represents the corresponding elapsed time. The next function is the

most important function of the module, as it generates an event using a stochastic

selection policy, starting from a list of rates. For instance, a term next(2.0 3.0

5.0) is evaluated when the system to simulate can perform one of three types of

action, characterized by the rate 2, 3, and 5, orderly. It evaluates to an event @(N,F),

where N can be 0 with probability 20%, 1 with probability 30%, and 2 with probability

50%. F is computed from an exponential distribution, and is average value is 0.1—

for the sum of rates is 10. A possible result obtained by the Maude command

“rewrite next(2.0 3.0 5.0).” is e.g. the event @(1, 7.330813624033139e-2).

The selection of an action and of the elapsed time is of course random, and exploits

the function $rand which yields a number in between 0 and 1—which itself uses the

built-in function random as shown in the equation (eq) in the picture. Full details

of the implementation of function next are not reported for brevity.

3.2 The STANDARD-CARRIER module

When a user provides a stochastic system specification, that specification must

implement a number of definitions representing the different concepts exploited

during simulation. The module STANDARD-CARRIER shown in Figure 2 provides

that definitions and the necessary constraints on them—it roughly plays the role of

an abstract class in OO languages, to be implemented with details of the system at
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mod STANDARD-CARRIER is
pr FLOAT .
pr BOOL .

sort State Action States .

subsort State < States .
op __ : States States -> States [ctor assoc comm] .

sort Effect Effects .
op _#_->[_] : Action Float States -> Effect [ctor] .

subsort Effect < Effects .
op nil : -> Effects [ctor] .
op _;_ : Effects Effects -> Effects [ctor assoc id: nil] .

*** TO BE IMPLEMENTED
sort Observation .
op obs : Nat State Float -> Observation .

op _==> : State -> Effects .
op temp : State -> Bool .
op quit : Nat State Float -> Bool .

endm

Fig. 2. Definitions in the STANDARD-CARRIER module.

hand.

First of all, sorts for a system state (State), an action (Action), and a multiset

of states (States) must be provided. A constructor operator is introduced to let

the juxtaposition of two states be of sort States. That operator is then declared to

be commutative (comm) and associative (assoc): this is used to state that a States

represents a (non-void) multiset of elements of sort State.

Then types Effect and Effects are defined. The operator # ->[ ] is used

to construct an Effect. A term of the kind A#F->[Ss] means that in a certain

system state, action A can be applied with rate F, which moves the system to any

state in the multiset of states Ss. An operator ; is then specified to state that

sort Effects represents a list ([assoc]) of elements of sort Effect, separated by

semi-colons, and with constant nil representing the empty list.

Sort Observation provides the user with the concept of observability: operator

obs takes a system state and yields a partial view, namely, an element of sort

Observation. The output of a simulation will be a trace of observations: function

obs is then to be carefully designed whenever a user does not mean to trace the

overall system dynamics but is just interested in few parameters—as is typically the

case.

Most importantly, the user must provide an implementation of operator ==>,

which takes a system state and yields a list of effects, i.e. describes the transition

system S
r:a
−−→ S′.

Finally, the user must implement the predicates temp and quit. The temp pred-

icate is defined over states so as to mark a given state as temporary, thus preventing

the engine from adding it to the simulation trace. The quit predicate is instead

used to check if/when a simulation has to be stopped, for the system seemingly

reached a final state. These two predicates come with default implementations,

both yielding false.

Concretely, as we will show in the example of Section 3.6, for a user to run a
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mod STOCHASTIC-TRACES-TYPES{ X :: CARRIER } is
pr STOCHASTIC-SELECTION .

sort Step Observations Trace Steps Evt Evts .

subsort Step < Steps .
op [_:_@_] : Nat X$State Float -> Step [ctor format (ni d d d d d d d)] .
op nil : -> Steps .
op _+_ : Steps Steps -> Steps [ctor assoc id: nil ] .

subsort X$Observation < Observations .
op _,_ : Observations Observations -> Observations [ctor assoc id: empty] .
op empty : -> Observations [ctor] .

op _<_> : Step Observations -> Trace [ctor format (d d ni ni d)].
op <_>_ : Observations Step -> Trace [ctor format (d ni ni d d)].

endm

Fig. 3. Definitions in the STOCHASTIC-TRACES-TYPES module.

system simulation he/she must define sorts Action, State, and Observation, along

with implementations for operators ==> and obs.

3.3 The STOCHASTIC-TRACES-TYPES module

As Figure 3 reports, the STOCHASTIC-TRACES-TYPES module contains the def-

inition of the types that are necessary to implement the stochastic en-

gine. STOCHASTIC-TRACES-TYPES is parametric in a module X that implements

STANDARD-CARRIER, and that represents the actual system to simulate; accordingly,

e.g. sorts X$State and X$Observation are used to denote the sorts of the system’s

states and observations.

Types and constructors for the concepts of (i) Step, (ii) Steps, and (iii)

Observations are first introduced. A Step represents a simulation step, whose

structure is [N:S@F], where N is a countdown counter of the simulation, S is the

current system state, and the float F is the elapsed time since the beginning. A

Steps element is a list of steps separated by commas, while an Observations ele-

ment is a list of observations separated by commas.

Then, sort Trace is defined. A Trace represents the outcome of a simulation

STn<OB1,OB2,...,OBn>, where: STn is a Step that represents the current state of

the simulated system, and OB1,OB2,...,OBn is a list of observations providing a

view on the system evolution.

3.4 The STOCHASTIC-TRACES-FUNCTIONS module

The STOCHASTIC-TRACES-FUNCTIONS module contains the definition of the

necessary functions for the stochastic engine. Figure 4 shows the def-

inition of the most important functions in STOCHASTIC-TRACES-FUNCTIONS.

STOCHASTIC-TRACES-FUNCTIONS is parametric in a module X that implements

STANDARD-CARRIER, and that represents the system to simulate: hence, both type

X$State and type X$Effects are specific for that system.

First of all, the activities function is defined. Given a list of Effect as input,

the activities function yields a list of Float numbers that are the rates of the
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mod STOCHASTIC-TRACES-FUNCTIONS{ X :: CARRIER } is
pr STOCHASTIC-SELECTION .
pr STOCHASTIC-TRACES-TYPES{X} .

op activities : X$Effects -> List{Float} .
eq activities( nil ) = nil .
eq activities( ( A # F -> [ LS ] ) ; Es ) = F activities(Es) .

op newState : Nat X$Effects -> X$State .
eq newState( 0 , ( A # F -> [ LS ] ) ) = one( LS ) .
eq newState( 0 , E ; Es ) = newState( 0, E ) .
eq newState( s N , (E ; Es) ) = newState( N, Es) [owise].
endm

Fig. 4. Definitions in the STOCHASTIC-TRACES-FUNCTIONS module.

actions of each Effect.

Then the newState function is defined. Given a list of Effect and a Nat number

N as input, this function yields a State representing the new system’s state for the

next step of a simulation. The new system’s state is the State caused by the Nth

Action, namely, the action belonging to the Effect in the Nth position of the input

list.

The following Section 3.5 illustrates how the described functions are used in

order to define the stochastic engine.

3.5 The STOCHASTIC-TRACES-ENGINE module

As illustrated in Figure 5, the STOCHASTIC-TRACES-ENGINE module pro-

vides the definition and the implementation of the stochastic engine.

Likewise STOCHASTIC-TRACES-TYPES and STOCHASTIC-TRACES-FUNCTIONS,

STOCHASTIC-TRACES-ENGINE is also parametric in a module X that has to im-

plement STANDARD-CARRIER, and that represents the actual system to simulate;

accordingly, types X$State and X$Action are e.g. used to denote the types of this

system’s states and actions.

The module starts defining a number of variables, e.g. F with type Float, and

FF and FF’ with type [Float]: this is called a kind in Maude, and represents a

float expression that is possibly not fully evaluated yet.

Function move in the module implements the single-step behaviour of the

simulation engine. It takes a Step and produces the next one, randomly,

by properly using the functions defined both in STOCHASTIC-SELECTION and in

STOCHASTIC-TRACES-FUNCTIONS. In particular, as the event @(NN,FF) is computed

from the currently available rates, the simulation counter decreases (from (s N) to

N in Peano notation), the elapsed time increases of FF, and finally the new state SS

is obtained by applying the NNth action (by means of the newState function). Note

that the move function works if the simulation counter did not reached zero.

The trace function is exploited by users who want to obtain a complete trace

of observations as outcome of their simulated systems.

The function is defined by mean of three equations: the first applies when the

current state is temporary, in which case the new step is computed by function

move without updating the countdown and without adding a new observation to
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mod STOCHASTIC-TRACES{ X :: CARRIER } is
protecting STOCHASTIC-SELECTION .

*** INTERNALS
var O : X$Observation . var OO : [X$Observation] .
var S S’ S1 S2 : X$State . var P : Step .
var SS SS1 : [X$State] . var Es : [X$Effects] .
vars N N1 N’ : Nat . vars NN : [Nat] .
vars F F1 F2 : Float . vars FF FF’ FF1 : [Float] .
vars L : Observations .

op move : Step -> Step .

ceq move( [ (s N) : S @ F] ) = [ N : SS @ FF ]
if Es := evalEffects(S ==>) /\

@( NN , FF’ ) := next(activities(Es)) /\
NN =/= -1 /\
FF := F + FF’ /\
SS := newState( NN , Es ) .

eq move( [ (s N) : S @ F] ) = [ (s N) : S @ F ] [owise] .

op trace : Trace -> Trace .

ceq trace( [N : S @ F]< L > ) = trace( [N : SS @ FF]< L > )
if temp(S)

/\ [ (N) : SS @ FF ] := move([ (s N) : S @ F ]) .

ceq trace( [s N : S @ F]< L > ) = trace( [N : SS @ FF] < L , O > )
if not temp(S)

/\ not quit(N, S, F)
/\ O := obs(s N, S, F)
/\ [ (N) : SS @ FF] := move([ (s N) : S @ F ]) .

ceq trace([s N : S @ F]< L >) = trace( [0 : S @ F] < L , O > )
if not temp(S)

/\ quit(N, S, F)
/\ O := obs(s N, S, F) .

ceq trace([0 : S @ F] < L >) = < L , O > [0 : S @ F]
if not temp(S)

/\ O := obs(0,S,F) .

op last : Trace -> Evt .

ceq last( [N : S @ F]< L > ) = last( [N : SS @ FF]< L > )
if temp(S)

/\ [ (N) : SS @ FF ] := move([ (s N) : S @ F ]) .

ceq last( [s N : S @ F]< L > ) = last( [N : SS @ FF] < O > )
if not temp(S)
/\ not quit(N, S, F)
/\ O := obs(s N, S, F)
/\ [ (N) : SS @ FF] := move([ (s N) : S @ F ]) .

ceq last([s N : S @ F]< L >) = evt( N , O , F )
if not temp(S)

/\ quit(N, S, F)
/\ O := obs(s N, S, F) .

ceq last([0 : S @ F] < L >) = evt(0 , O , F )
if not temp(S)

/\ O := obs(0,S,F) .

endm

Fig. 5. Definitions in the STOCHASTIC-TRACES-ENGINE module.

the current trace of the simulation; the second defines the behaviour of the engine

when the current state is not temporary, adding a new observation to the trace

of the simulation and computing the new simulation step; finally the third applies

when the current state is a final state, in which case a new observation is added to

the current trace and the simulation is terminated.

To produce for instance 100 simulation steps starting from state S0, the
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Maude command “rewrite trace( [100 : S0 @ 0.0] < empty > ).” is to

be run, producing an output of the kind: < Obs1 Obs2 ... Obs100 >, where

Obs1,Obs2...Obs100 are observations showing the evolution of the simulated sys-

tem.

The last function is employed by users who are interested only to see the final

observation of their simulated systems. Likewise trace, the last function is defined

by means of three equations: the first applies when the current state is temporary, in

which case the new step is computed by function move without updating the count-

down and without adding a new observation to the current trace of the simulation;

the second defines the behaviour of the engine when the current state is not tempo-

rary, computing the new simulation step and producing no observations; the third

applies when the current state is a final state, in which case the simulation is termi-

nated and an observation—representing the user-defined view on the final state—is

produced as outcome of the simulation. Hence, unlike trace, the last function

provides users with an outcome containing only the observation related to the fi-

nal state of a simulated system. To produce a 100-steps simulation using last, the

Maude command is “reduce last( [100 : S0 @ 0.0] < empty > )” . The re-

sulting output is of the kind: < Obs100 >, representing the observation on the state

associated with the 100th (last) simulation step.

3.6 An example: the Na − Cl specification

We consider now the standard example of the Na−Cl chemical reaction dynamics,

provided e.g. in SPiM documentation 4 , in order to briefly explain the process of

creating a system specification to simulate.

The module to realize this specification is reported in Figure 6. This system is

characterized by a state of the kind <Na,Na+,Cl,Cl->, where Na is the of sodium

atoms, Na+ the number of sodium ions, Cl is the number of chlorine atoms, Cl- the

number of chlorine ions. Two kinds of constant actions are then defined: ionize

stands for ionization and deionize for deionization.

Then, the transition system is expressed by a single equation, associating to any

state two possible effects: one in which ionization decrements Na and Cl (by prefix

predecessor function p) and increments Na+ and Cl- (by prefix successor function

s), and the other that behaves in the opposite way. Note that, according e.g. to the

Gillespie selection algorithm in [7], the rate of ionization and deionization is here

proportional to the product of the two reactants, multiplied by a constant value:

we here e.g. enforce deionization factor as being twice that of ionization.

Finally, an Observation is expressed by the user-defined operator < , >@ . The

following equation on the obs predicate defines the actual meaning of the observa-

tion < , >@ . In particular, the definition expresses the interest to observe: (i) the

number of Na atoms, (ii) the number of Cl atoms, (iii) the number of simulation

steps.

The Maude command: “rew trace([300:<100,0,100,0>@0.0]< empty >)”

4 http://www.doc.ic.ac.uk/~anp/spim/Chemical.pdf
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mod NA-CL is
pr FLOAT .
pr INT .
pr CONVERSION .
pr STANDARD-CARRIER .

sort NaClState .
subsort NaClState < State .

op <_,_,_,_> : Nat Nat Nat Nat -> State .

ops ionization deionization : -> Action .

vars Na Na+ Cl Cl- : Nat .

eq < Na,Na+,Cl,Cl- > ==> =
( ionization # (float(Na * Cl) * 1.0) -> [< p Na,s Na+,p Cl,s Cl- >] );
( deionization # (float(Na+ * Cl-) * 2.0) -> [< s Na,p Na+,s Cl,p Cl- >] ) .

op <_,_>@_ : Nat Nat Nat -> Observation .
eq obs( Count:Nat, < Na,Na+,Cl,Cl- >, F:Float ) = < Na,Cl >@ Count:Nat .

endm

<
(< 100,100 >@ 300),
(< 99,99 >@ 299),
(< 98,98 >@ 298),
(< 97,97 >@ 297),
...
(< 61,61 >@ 7),
(< 60,60 >@ 6),
(< 59,59 >@ 5),
(< 58,58 >@ 4),
(< 57,57 >@ 3),
(< 58,58 >@ 2),
(< 59,59 >@ 1),
(< 60,60 >@ 0)
>

Fig. 6. Definition of the Na − Cl system based on our stochastic library.

produces the trace reported in Figure 6, showing that the system reaches a stable

state around <60,60>.

4 Collective Sort

To evaluate the applicability of our library as a simulation engine for coordination

mechanisms, we consider a generalized case of the Swarm intelligence brood sorting

problem [3], properly moved to a tuple spaces context.

4.1 General Scenario and Applications

We considered a multiagent system where the environment is structured and pop-

ulated with items of different kinds: the goal of agents is to collect and move items

across the environment so as to order them according to a shared criterion. This

problem basically amounts to clustering: homogeneous items should be grouped

together and should be separated from different ones. Moving to a typical context

of coordination models and languages, we consider the case of a fixed number of

tuple spaces hosting tuples of a known set of tuple types. The goal of agents is

to move tuples from one tuple space to the other until the tuples are clustered in

different tuple spaces according to their tuple type.
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In several scenarios, sorting tuples may increase the overall system efficiency.

For instance, it can make it easier for an agent to find an information of interest

based on its previous experience: the probability of finding an information where a

previous and related one was found is high. Moreover, when tuple spaces contain

tuples of one kind only, it is possible to apply aggregation techniques to improve

their performance, and it is generally easier to manage and achieve load-balancing.

Increasing system order however comes at a computational price. Achieving

ordering is a task that should be generally performed online and in background,

i.e. while the system is running and without adding a significant overhead to the

main system functionalities. Indeed, it might be interesting to look for suboptimum

algorithms that are able to guarantee a certain degree of ordering in time.

Nature is a rich source of simple but robust strategies: the behaviour we are

looking for has already been explored in the domain of social insects. Ants per-

form similar tasks when organizing broods and larvae [3]: this class of coordination

strategies are generally referred to as collective sort or collective clustering. Al-

though the actual behaviour of ants is still not fully understood, there are several

models that are able to mimic the dynamics of the system. Ants wander randomly

and their behaviour is modelled by two probabilities, respectively, the probability

to pick up Pp and drop Pd an item

Pp =

(
k1

k1 + f

)2

, Pd =

(
f

k2 + f

)2

, (1)

where k1 and k2 are constant parameters and f is the number of items perceived

by an ant in its neighborhood: f may be evaluated with respect to the recently

encountered items. To evaluate the system dynamics, apart from visualising it, it

can be useful to provide a measure of the system order. Such an estimation can

be obtained by measuring the spatial entropy, as done e.g. in [8]. Basically, the

environment is subdivided into nodes and Pi is the fraction of items within a node,

hence the local entropy is Hi = −Pi log Pi. The sum of Hi having Pi > 0 gives an

estimation of the order of the entire system, which is supposed to decrease in time,

hopefully reaching zero.

4.2 An Architecture for Implementing Collective Sort

We conceived a multiagent system as a collection of agents interacting with/via

tuple spaces: agents are allowed to read, insert and remove tuples in the tuple

spaces. Additionally, and transparently to the agents, an infrastructure provides

a sorting service in order to maintain a certain degree of order of tuples in tuple

spaces. This service is realized by a class of agents that will be responsible for

the sorting task. Hence, each tuple space is associated with a pool of agents, as

shown in Figure 7, whose task is to compare the content of the local tuple space

against the content of another tuple space in the environment, and possibly move

some tuple. Since we want to perform this task online and in background, and with

a fully-distributed, swarm-like algorithm, we cannot compute the probabilities in

Equation 1 to decide wether to move or not a tuple: the approach would not be
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Fig. 7. The basic architecture for implementing Collective Sort.

scalable since it requires to count all the tuples for each tuple space, which might

not be practical.

We devised a strategy based on tuple sampling, and suppose that tuple spaces

provide for a reading primitive we call urd, uniform read. This is a variant of the

standard rd primitive that takes a tuple template and yields any tuple matching

the template: primitive urd instead chooses the tuple in a probabilistic way among

all the tuples that could be returned. For instance, if a tuple space has 10 copies of

tuple t(1) and 20 copies of tuple t(2) then the probability that operation urd(t(X))

returns t(2) is twice as much as t(1)’s. As standard Linda-like tuple spaces typically

do not implement this variant, it can e.g. be supported by some more expressive

model like ReSpecT tuple centres [15].

When deciding to move a tuple, an agent working on the tuple space TSS follows

this agenda:

(i) it draws a destination tuple space TSD different from the source one TSS ;

(ii) it draws a kind k of tuple;

(iii) it (uniformly) reads a tuple T1 from TSS;

(iv) it (uniformly) reads a tuple T2 from TSD;

(v) if the kind of T2 is k and it differs from the kind of T1, then it moves a tuple

of the kind k from TSS to TSD.

The point of last task is that if those conditions hold, then the number of tuples k

in TSD is more likely higher than in TSS, therefore a tuple could/should be moved.

It is important that all choices are performed according to a uniform probability

distribution: while in the steps 1 and 2 it guarantees fairness, in steps 3 and 4 it

guarantees that the obtained ordering is appropriate.

It is worth noting that the success of this distributed algorithm is an emergent

property, affected by both probability and timing aspects. Will complete ordering

be reached starting from a completely chaotic situation? And if ordering is reached,

how many moving attempts are globally necessary? These are the sort of questions

that could be addressed at the early stages of design, thanks to a simulation tool.
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mod CS-TYPES is
pr QID .

sort Tuple TupleMSet Space QList Task DataSpace .

*** TUPLES
op _[_] : Qid Nat -> Tuple [ctor] .

subsort Tuple < TupleMSet .
op empty : -> TupleMSet [ctor] .
op _|_ : TupleMSet TupleMSet -> TupleMSet [ctor assoc comm id: empty] .

*** TUPLE SPACE
op <_@_> : Nat TupleMSet -> Space [ctor] .

*** AGENT-TASK
op init : -> Task [ctor] .
op [_] : Nat -> Task [ctor] .
op [_] : Qid -> Task [ctor] .
op _;_ : Task Task -> Task [ctor assoc] .

*** DATASPACE
subsort Task Space QList < DataSpace .
op empty : -> DataSpace [ctor] .
op _|_ : DataSpace DataSpace -> DataSpace [ctor assoc comm] .

...
endm

Fig. 8. Module CS-TYPES.

4.3 Modelling and Simulating Collective Sort in Maude

In this section we briefly describe a Maude specification of our solution to the

collective sort problem, and show simulation results. Our model sticks to the case

where 4 tuple spaces exist, labelled with natural identifiers 0, 1, 2 and 3. Tuples

are expressed as Maude quoted identifiers and can be any, though the simulations

we consider here feature the four tuple types ’a, ’b, ’c, and ’d. Moreover, we

suppose tuple spaces are accessed by agents at the same rate—more fine grained

load-balancing issues could be taken into account, which is not considered in this

paper for simplicity.

4.3.1 The Collective Sort model in Maude

The Maude specification of the Collective Sort system described in 4.2 is divided

in three modules, respectively defining the structure of a system’s state (CS-TYPES),

some utility functions (CS-FUNCTIONS), and finally the stochastic transition system

operator ==> (CS).

Figure 8 shows the definitions in the first module. Sort Tuple is used to

model the occurrence of a tuple in a tuple space: for instance, ’a[10] means

10 tuples of tuple type ’a occurs. Sort Space is used to represent a tuple

space: < 0 @ (’a[10])|(’b[10])|(’c[10])|(’d[10]) > means the tuple space

with identifier 0 has 10 copies of each tuple type. A Task is a sequence of terms

holding the state of the agent currently in charge of evaluating a tuple move. The

sequence grows incrementally as an agent takes decisions: at the end of the proto-

col it is of the kind [N1];[N2];[Q];[Q1];[Q2], where N1 is the source tuple space

identifier, N2 the target tuple space identifier, Q the type of tuple to be possibly

moved, Q1 the tuple read from the source, and Q2 the tuple read from the target. A

QList is a list of quoted identifiers, representing the tuple types to be sorted. Fi-
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nally, a DataSpace is a (multiset-like) composition of Space’s, a Task representing

current agent’s work, and a QList.

Module CS-FUNCTIONS is not reported for brevity. It basically defines three

functions: choose takes a list of tuple type identifiers and returns one non-

deterministically chosen; occurringTuples takes the content of a tuple space and

returns the list of tuple types occurring in it; quantities takes the content of a

tuple space and a list of tuple types and returns the cardinality of each of them.

The CS module, as depicted in Figure 9, can be viewed as the core of the Col-

lective Sort model. First of all, six kinds of action are defined: the former is of the

kind source(0),. . . ,source(3) and is used to start an agent working on a certain

tuple space; the others are constants corresponding to the five steps of the agent

agenda. The constant SS is assigned to the initial state of the system we want to

simulate, where tuples are spread in different quantities in the various tuple spaces.

The stochastic transition system semantics is divided in six groups according

to the actions to be executed. Note first that initially four actions of the first

kind are allowed, each with rate 0.25. The rate of other actions is the constant

now, which is assigned to a large float, meaning that these actions should happen

immediately. By this modelling choice, we will simulate a system where one agent

evaluates for moving a tuple at each time unit, and such an evalution is immediate.

The behaviour of transitions is briefly described as follows:

source(i) — When task init occurs in the space it is time to spawn a new agent

task: any of the tuple spaces can be chosen as source, with same probability.

Task [i] correspondingly replaces init, where i is the source chosen. Note that

DS is a variable over DataSpace, which here matches with the rest of the system.

chooseTarget — To choose a target, any tuple space in 0,1,2 is tried. If the

result is equal to the current source, tuple space 3 is actually taken as target.

This guarantees the source and target tuple spaces to be distinct. The task

moves then to state [Ns];[Nt]—source and target identifier, respectively.

chooseTupleType — A tuple type is chosen randomly out of those currently occur-

ring in Ns. This is computed with functions choose and occurringTuple, and is

used to avoid picking a tuple which is currently absent in the source tuple space.

The task moves then to [Ns];[Nt];[QQ]—where QQ is the tuple type chosen.

readSource — In this step a tuple type is drawn from the source tuple space

using uniform read. Expression get(QL,sample(quantities(QL, MT))) is used

to sample a tuple giving higher probability to those that occur more.

readTarget — Similar sampling is done on the target tuple space. The task moves

now to [Ns];[Nt];[Q];[Q1];[Q2]—where Q1 and Q2 are the tuple types read.

move — If the task matches [Ns];[Nt];[Q];[Q1];[Q] and Q1 is different from Q,

then a tuple of kind Q is to be moved from Ns to Nt, which is realized by properly

updating the tuple counters. Otherwise ([owise]), the tuple spaces state is left

unchanged. In both cases, the task gets back to init.

Finally, the temp function defines as temporary states those that do not have
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mod CS is
pr CS . pr STANDARD-CARRIER .

op source : Nat -> Action . *** SYNTAX OF ACTIONS AND STATES
op chooseTarget : -> Action .
op chooseTupleType : -> Action .
op readSource : -> Action .
op readTarget : -> Action .
op move : -> Action .

subsort DataSpace < State .
*** A REFERNCE INITIAL STATE

op SS : -> State .
eq SS = ( init | < 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) > |

< 1 @ (’a[ 0])|(’b[100])|(’c[10])|(’d[10]) > |
< 2 @ (’a[ 10])|(’b[ 50])|(’c[50])|(’d[10]) > |
< 3 @ (’a[ 50])|(’b[ 10])|(’c[10])|(’d[50]) > |
(’a , ’b , ’c , ’d ) ) .

*** IDENTIFYING SOURCE *** TRANSITION SYSTEM SEMANTICS
eq (init | DS)==> =
( source(0) # 0.25 -> [ [0] | DS ] );
( source(1) # 0.25 -> [ [1] | DS ] );
( source(2) # 0.25 -> [ [2] | DS ] );
( source(3) # 0.25 -> [ [3] | DS ] ) .

*** CHOOSING TARGET
eq ([Ns] | DS) ==> = (chooseTarget # now -> [ [Ns];[range(3)]| DS ]) .
eq ([Ns];[Ns] | DS) ==> = (chooseTarget # now -> [ [Ns];[3] | DS ]) .

*** CHOOSING TUPLE TYPE QQ
ceq ([Ns];[Nt] | < Ns @ MT > | DS ) ==> = ( chooseTupleType # now -> [

([Ns];[Nt];[QQ] | < Ns @ MT > | DS ) ] )
if QQ := choose(occurringTuples(MT)) .

*** READING FROM SOURCE
ceq ([Ns];[Nt];[Q] | < Ns @ MT > | QL | DS ) ==> = ( readSource # now -> [

([Ns];[Nt];[Q];[QQ] | < Ns @ MT > | QL | DS ) ] )
if QQ := get( QL , sample(quantities(QL, MT))) .

*** READING FROM TARGET
ceq ([Ns];[Nt];[Q];[Q1] | < Nt @ MT > | QL | DS ) ==> = ( readTarget # now -> [

([Ns];[Nt];[Q];[Q1];[QQ] | < Nt @ MT > | QL | DS ) ] )
if QQ := get( QL , sample (quantities(QL, MT))) .

*** MOVING OR DISCARDING
ceq ( [Ns];[Nt];[Q];[Q1];[Q] |

< Ns @ (Q[s N ]) | MT > |
< Nt @ (Q[ N’ ]) | MT1 > | DS ) ==> = ( move # now -> [

( init |
< Ns @ (Q[ N ]) | MT > |
< Nt @ (Q[s N’]) | MT1 > | DS) ] )

if Q1 =/= Q .

eq ( [Ns];[Nt];[Q];[Q1];[Q2] | DS ) ==> = ( move # now -> [
( init | DS ) ] ) [owise] .

eq temp( init | DS ) = false . *** TEMPORANEOUS STATES
eq temp( DS ) = true [owise] .
endm

Fig. 9. The transition system semantics in module CS.

task init, which will then cause the simulation counter not to update.

From the previous description, it might become clear why we have chosen

Maude among other languages for stochastic simulations: Maude really allows

to define syntax and semantics in quite custom and flexible way. Instead, for exam-

ple, when working with π-Calculus one is forced to model the system in terms of

processes and channels: while these abstractions might be useful in certain domains,

it may not be suitable to map tuple either to a process or a channel.
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<
[5000 : init | < 0 @ (’a[100]) | (’b[100]) | (’c[10]) | (’d[10]) > |

< 1 @ (’a[0]) | (’b[100]) | (’c[10]) | (’d[10]) > |
< 2 @ (’a[10]) | (’b[50]) | (’c[50]) | (’d[10]) > |
< 3 @ (’a[50]) | (’b[10]) | (’c[10]) | (’d[50]) > | ’a,’b,’c,’d

@ 0.0],
[4999 : init | < 0 @ (’a[100]) | (’b[100]) | (’c[10]) | (’d[10]) > |

< 1 @ (’a[0]) | (’b[100]) | (’c[10]) | (’d[10]) > |
< 2 @ (’a[10]) | (’b[50]) | (’c[50]) | (’d[10]) > |
< 3 @ (’a[50]) | (’b[10]) | (’c[10]) | (’d[50]) > | ’a,’b,’c,’d

@ 5.2282294679077934e-1],
...
[4989 : init | < 0 @ (’a[100]) | (’b[100]) | (’c[10]) | (’d[10]) > |

< 1 @ (’a[0]) | (’b[101]) | (’c[10]) | (’d[10]) > |
< 2 @ (’a[10]) | (’b[50]) | (’c[50]) | (’d[10]) > |
< 3 @ (’a[50]) | (’b[9]) | (’c[10]) | (’d[50]) > | ’a,’b,’c,’d

@ 8.6379503776170434],
...
[4000 : init | < 0 @ (’a[107]) | (’b[89]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[136]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[35]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[53]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 9.7664497212663287e+2],
...
[3000 : init | < 0 @ (’a[112]) | (’b[69]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[191]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[48]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 2.0243203450809999e+3],
...
[2000 : init | < 0 @ (’a[127]) | (’b[50]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[210]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[33]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 3.0679938546387184e+3],
...
[1000 : init | < 0 @ (’a[142]) | (’b[18]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[242]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[18]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 4.0271359303450395e+3],
...
[438 : init | < 0 @ (’a[160]) | (’b[0]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[260]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[0]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 4.6001450653146167e+3],
...
[0 : init | < 0 @ (’a[160]) | (’b[0]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[260]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[0]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 5.0313233386068514e+3]
>

Fig. 10. Simulation result for the Collective Sort simulation

4.3.2 Simulating the Collective Sort in Maude

As described in previous sections, the simulation can be run by giving the Maude

interpreter a command like

rewrite < [ 5000 : ( SS ) @ 0.0 ] > .

which executes precisely 5000 agent executions starting from state SS. Figure 10

shows a piece of the output produced by the execution of the simulation—where

each step includes simulation countdown counter, system state, and elapsed time.

After some steps, some tuple starts moving from one space to the others. After

2024 time units, for instance, tuple kind ’c is already completely collected in tuple

space 2. After 4600 time units, the system converged to a complete sorting, as we

expected from our distributed algorithm. Chart in Figure 11 reports the dynamics of
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the winning tuple in each tuple space, showing e.g. that complete sorting is reached

at different moments in time in each case. The chart in Figure 12 displays instead

the evolution of the tuple space 0: notice that only the tuple kind ’a aggregates

here despite its initial concentration was the same of tuple kind ’b. Although it

is possible to make some prediction, we do not know in general which tuple space

will host a specific tuple kind at the end of sorting: this is an emergent property of

the system and is the very result of the interaction of the tuple spaces through the

agents! Indeed, the final result is not completely random and the concentration of

tuples will evolve in the same direction most of the times.

It is interesting to analyse the trend of the entropy of each tuple space—

computed as described in Section 4.2—as a way to estimate the degree of order

in the system through a single value: since the strategy we simulated is trying

to increase the inner order of the system we expected the entropy to decrease, as

actually shown in Figure 13.
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Fig. 11. Dynamics of the winning tuple in each tuple space: notice that each tuple aggregates in a different
tuples space.

5 Conclusion

In this article we argued about the necessity of considering stochastic aspects when

designing self-organization-like coordination mechanisms: this issue is both emerg-

ing in few proposals of new coordination models and in related research contexts.

The Maude library we developed allows for easily prototyping simulations of coor-
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dination techniques, and studying their emergent properties. We tested the module

by specifying a typical scenario of swarm-like coordination, the collective sort prob-

lem, which we believe is a very paradigmatic application of emergent coordination

because of its basic formulation.

Several interesting future works can be pursued:

• In the context of collective sort, we plan to evaluate techniques applying load-

balancing approaches, optimising the convergence to complete order, and working

with different combinations of the number of tuple spaces and tuple kinds. Indeed,

though in our cases the system appears to stabilize to the desired state, when

working with self-organising systems it is possible that the system evolves to a

stable state which is not the final one. In other words, we have to provide more

guarantees about the behaviour of the strategy.

• The library itself is currently a very simple prototype, but we believe it could be

improved in several ways and become a very practical simulation tool.

• Another interesting idea would be to apply our library to some existing coordi-

nation models like SwarmLinda, and provide the necessary tests for the proposed

algorithms.

• Finally, it would be interesting to analyse the existing results on probabilistic

model-checking, and see whether global emergent properties can be automatically

inferred from a system specification.
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